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Abstract

In this study, we develop an equilibrium pricing model for an option contract with a coun-
terparty risk, a collateral agreement, a counterparty risk constraint, and a threshold. Since we
consider the option market to be an example of the derivatives market, we suppose that the
buyer of an option has only countertparty risk of a seller defaulting. In addition, we consider a
model where the buyer is allowed to enter into an option contract within an allocated amount
of risk capital for counterparty risk, and requires (cash) collateral to the seller if the exposure
exceeds the threshold. The counterparty risk is measured as a credit valuation adjustment. We
provide an equilibrium pricing rule and an equilibrium volume formula by solving participants’
static utility-maximization problems. Based on numerical simulations, we verify the mech-
anisms through which collateralization, risk capital, and the threshold affect the size of the
over-the-counter option market. Finally, we analyse the influence of the buyer’s risk-aversion
on the market, without collateralization. The results imply that the risk constraint might be
a proxy for an investor’s attitude towards risk.

JEL Classification: G10, G12, G13
Keywords: equilibrium pricing, counterparty risk, counterparty risk constraint, collateralization,
threshold, risk appetite

1 Introduction

In this study, we consider the equilibrium pricing of an over-the-counter (OTC) derivative con-
tract with counterparty risk, collateralization, and a counterparty risk constraint. Our study aims
to verify the effect of collateralization on the OTC derivative contract under the restriction of
counterparty risk. This restriction means that a market participant with a positive exposure to
counterparty risk is able to have a derivative contract within an allocated amount of risk capi-
tal. In mathematical terms, the agent can have derivative contract position where the amount of
counterparty risk is equal to or less than the amount of risk capital. We call the restriction on
the counterparty risk the ‘counterparty risk constraint’ or ‘risk constraint’ simply. In addition, we
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refer ‘risk constraint is bound’ or that we ‘exhaust the risk capital’ when the amount of the risk is
equal to the amount of risk capital. Except for the counterparty risk constraint, Takino (2016b)
has already studied the impact of collateralization on OTC derivative contracts (i.e. option and
forward contracts). We construct an equilibrium pricing model by adding the counterparty risk
constraint to the model of Takino (2016b), and describe how collateral agreement influences the
OTC derivative contract under this constraint.

After the financial crisis in 2008, counterparty risks in OTC derivative contracts generated much
attention from practitioners and researchers. Counterparty risk is known as the possibility of failing
to meet the full payoff of a derivative contract. In order to hedge or eliminate counterparty risk,
in 2013, the G20 decided that collateral agreements would be imposed on market participants in
the OTC derivatives market. Derivative pricing models that include collateralization have recently
been provided in several works (Fujii and Takahashi 2013, Johannes and Sundaresan 2003). These
models provide pricing formulae via the risk-neutral pricing method, and show that collateralization
is able to increase derivative prices.

Previous studies have not only provided pricing formulae of derivatives with collateral agree-
ments, but have also considered the influences of collateralization on financial markets (Acharya
and Bisin 2014, Geanakoplos 1996, Takino 2016b). Collateral is delivered from the participant with
negative exposure to the participant with positive exposure at fixed time(s) before the derivative
contract matures. The payment to the participant with positive exposure is secured by the col-
lateral if default occurs. On the one hand, when the participant with negative exposure defaults,
she/he cannot recover the posted collateral. Therefore, collateralization affects investors’ wealth
and might influence participants’ behaviours in the financial market. As shown in previous stud-
ies, the equilibrium pricing approach enables us to incorporate investors’ behaviours into an asset
price. The equilibrium pricing is also able to provide an equilibrium traded volume for a financial
contract. Takino (2016b) showed that the impact on the option contract is more significant than
that of the forward contract. While Takino (2016b) demonstrated that collateralization decreases
the option volume overall (i.e. the trade-off relation between risk and liquidity), he also showed
that an increase in collateral increases the volume of option contracts for small collateral amounts.

Collateral is used to hedge or eliminate the counterparty risk and is incurred by the partici-
pant with negative exposure if the amount of exposure exceeds a certain monetary level (called
the threshold). On the other hand, the agent with positive exposure manages the counterparty
risk on his/her own. The investors under the counterparty risk constraint are allocated risk capital
for the counterparty risk and allowed to have positions or to trade derivatives within this amount.
Danielsson et al. (2004) modelled the behaviours of the investors who posed a value-at-risk (VaR)
constraint, and showed that the VaR constraint affects the asset return (including price and liq-
uidity). Shin (2010) also lectures the effects of the VaR constraint on the asset market. Zhang
and Gao (2017) considered a dynamic portfolio selection problem under the VaR constraint, and
demonstrated that the constraint reduces the invested proportion of risky assets in an optimal
portfolio.

In this study, we apply the counterparty risk constraint and the threshold, and construct an
equilibrium pricing model for the derivative contract with a collateral agreement. In addition to
Danielsson et al. (2004) and Zhang and Gao (2017), Buss et al. (2016) considered a financial market
model with financial regulations, such as investment constraints, borrowing constraints and so on.
However, this is the first study to consider a constraint for the counterparty risk, to best of our
knowledge. An equilibrium pricing formula for the option is provided, and we derive an equilibrium
formula for the volume. We evaluate the marked-to-market (MtM) value of the derivative and
the amount of counterparty risk using a pricing kernel (often called a stochastic discount factor),
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with an exponential utility to maintain a consistency with our equilibrium pricing approach. The
amount of counterparty risk is evaluated as the credit value adjustment (CVA) in this study. Then,
we observe the influences of collateralization, risk capital (or the risk constraint), and the threshold
on the equilibrium price and volume of the option contract. In particular, we find that the pricing
formulae depend on the amount of risk capital when the participant exhausts the risk capital. To
highlight the effects of the risk constraint on the derivative contract, we also provide equilibrium
formulae without collateralization, and investigate the effect of an investor’s risk-aversion on the
derivative contract.

The results in this study rely on numerical implementations. We show that the equilibrium price
and volume of an option increase when the amount of collateral increases. This characteristic has
already been demonstrated by Takino (2016b) for a particular parameter set. Our study provides an
explicit mechanism to show this property through the counterparty risk constratint. The increase
in collateral decreases the amount of the counterparty risk. This relaxes the constraint of the
counterparty risk for the option buyer and increases demand for the claim. In fact, we demonstrate
that the price and volume when the risk constraint is not bound are larger than those when the
constraint is bound. Conversely, tightening the risk constraint decreases the price and volume. That
is, we show that collateralization affects the derivative contract under counterparty risk through
the counterparty risk constraint.

We obtained the following with regard to the allocated risk capital and the threshold affect on
the counterparty risk constraint, because these change the collateral amount to be posted. We
show that an increase in the risk capital or a decrease in the threshold increases the equilibrium
price and volume (i.e. market size) of the claim. Conversely, to decrease the market size of the
OTC derivative market, we can reduce the risk capital for counterparty risk or raise the threshold.
Hence, our findings show that risk capital and the threshold might be devices that can be used to
control the market like other financial regulations as demonstrated by Buss et al. (2016).

Finally, we investigate the effect of a buyer’s risk aversion on the derivative contract without
collateralization. The numerical result demonstrates that the price and volume decrease when an
investor becomes more risk averse. This is equivalent to the influence of a decrease in risk capital
or an increase in the threshold on the derivative contract. That is, the result indicates that the
risk constraint might be a proxy for an investor’s attitude to risk, and is able to adjust the market
without controlling an investor’s risk aversion. Risk capital is money that allows investors to make
a loss from asset trading. Thus, the allocated risk capital indicates a risk appetite. Some previous
studies have found that the concept of risk appetite does not only include risk aversion (Danielsson
et al. 2010, Illing and Aaron 2005), because it might change according to economic or management
conditions, as mentioned by Danielsson et al. (2010). However, our result highlights a consistency
between risk aversion and risk appetite.

The remainder of the paper is organized as follows. In the next section, we introduce a financial
market model with a collateral agreement and a counterparty risk constraint. We also provide a
pricing kernel, which we use to evaluate the amount of the counterparty risk and collateral from
the utility-maximization problems for market participants with an exponential utility. In Section
3, we derive the equilibrium price and volume for the option contract under the counterparty risk
constraint in the context of the exponential utility framework. In Section 4, we observe the effects
of collateralization on price and volume for the claim using a numerical method. In the numerical
implementation, we use a continuous time model and a Monte Carlo simulation. We conclude the
paper in Section 5.
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2 Model and Collateralization

In this section, we set a financial market model for an OTC derivative market with a counterparty
risk. The market model is constructed based on Takino (2016b).

2.1 Financial Markets

We first set a probability space (Ω,F , P ) and denote the element of Ω by ω.
There are two market participants in our financial market. They respectively invest in a risk-free

asset (typically a bank account) and two risky assets (typically stocks). We further assume that the
risky asset invested in by an agent differs from that held by another investor, for all participants,
and that the amount invested in a risky asset is given exogenously. The risk-free asset value at
time t (0 ≤ t ≤ T ) is denoted by Bt = ert with a constant risk-free rate r, and the risky asset
value at time t is expressed by Sj

t , held by participant j, where T denotes the maturity date of the
derivative. We denote πj as the amount invested in the risky asset by agent j (j = l, s).

In addition to the risky assets, we suppose there is a European-type derivative written on a
risky asset Y , with a payoff function at maturity T given by

H(T,ω) := H(T, YT (ω)),

and the price of the underlying asset at time t denoted by Yt (0 ≤ t ≤ T ). We also assume that the
price of the underlying asset is correlated with the risky assets. We do not restrict the underlying
asset Y in terms of whether it is traded in our economy. Thus, the underlying asset includes a
stock index, a commodity price, an average temperature, and so on. We denote the long-holder of
the derivative by ‘l’ and the short-holder by ‘s’. Furthermore, they behave as price takers in the
financial markets included the derivative market.

We assume there is a counterparty risk in the derivative contract. The counterparty risk is the
possibility that a participant will fail to meet the full payout of H(T,ω). In order to reduce or
eliminate the loss due to the counterparty risk, the agent with positive exposure can require (cash)
collateral from the counterparty with negative exposure at the marked-to-market (MtM) date.
Takino (2016a) shows that the affect of collateralization on an option contract is more significant
than it is on a swap contract. Therefore, in our study, we only consider an option contract as an
example of a derivative contracts. Hence, the long-holder (buyer) of the option only has positive
exposure for the derivative contract; that is, the counterparty risk is unilateral. We represent the
event of default by an indicator function 1D(ω), and denote the recovery rate of a default payment
by η(T,ω). We also suppose that both are determined from the short-holder’s risky asset value Ss

T

at maturity. Under these settings, the option payoff Ĥ with counterparty risk is represented by

Ĥ(T,ω) =H(T,ω)(1− 1D(ω)) + η(T,ω)H(T,ω)1D(ω)

=H(T,ω)−H(T,ω)(1− η(T,ω))1D(ω).
(2.1)

From (2.1), we observe that the payoff function with counterparty risk is decomposed into a payoff
without counterparty risk and a loss due to counterparty risk.

2.2 Threshold and Net Exposure

We introduce a threshold for a derivatives contract. The threshold is a sort of credit line, and
collateral is called from the participant with positive exposure to the derivatives contract if the
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exposure exceeds the threshold (Gregory 2010). Denoting the threshold and the exposure at time t
by M and Ṽt, respectively, the participant with negative exposure is required to provide collateral
at contract date t = 0 if

Ṽ0 > M.

We then define the net exposure V0 at time 0 as

V0 = max(Ṽ0 −M, 0). (2.2)

We use an MtM value as an exposure amount and the MtM is only executed at the contract date
of the derivatives contract (i.e. t = 0). We suppose that Ṽt is calculated with a pricing kernel or
stochastic discount factor to maintain a consistency with our equilibrium pricing approach. Thus,
the MtM value of the option at time t is

Ṽt = E

[
E(T )
E(t) H(T )

]
,

where E is the pricing kernel determined from E(0) = 1. This pricing formula is known as the
economic premium principle. The economic premium principle approach was initiated by Bühlmann
(1980). Since then, several researchers have applied the formula to price contingent claims (Iwaki
et al. 2001, Iwaki 2002, Kijima et al. 2010, Takino 2016a).

We note that the threshold is not used to evaluate the counterparty risk (or credit risk) and is
only used to determine the collateral amount. The counterparty risk is calculated using a credit
value adjustment (CVA), as introduced in below.

2.3 Collateral Agreement

Cash collateral is posted to the agent with positive exposure from the counterparty with negative
exposure if the exposure exceeds the threshold. We assume that the collateral is deposited into a
risk-free asset to eliminate a collateral default1. The collateral amount is determined from the net
exposure V and coverage ratio φ (≥ 0). The coverage ratio determines how much of the risk the
investor wants to eliminate, and the actual settled amount of collateral is determined by φ in this
study. If the agent wants to fully cover the potential loss from a default, then she/he sets φ more
than 100%. The case of φ = 0% corresponds to the case of no collateral. Then, the called collateral
amount at the contract date is

φV0.

The option buyer loses amount (1 − η(T,ω))H(T,ω) when the counterparty defaults. The
collateral is aimed to cover this loss. Of course, there is a possibility that the collateral amount is
larger than the default loss; that is,

φBTV0 > (1− η(T,ω))H(T,ω).

In this case, we suppose that the residual cash amount φBTV0 − (1− η)H(T,ω) is returned to the
seller who posted the collateral. Therefore, the collateral amount C(T,ω;φ) that the buyer can
obtain at the seller’s default with coverage ratio φ, is

C(T,ω;φ) =φBTV01D(ω)−
{
(φBTV0 − (1− η(T,ω))H(T,ω))1D(ω), if φBTV0 > (1− η(T,ω))H(T,ω)

0, if φBTV0 ≤ (1− η(T,ω))H(T,ω)

=min(φBTV0, (1− η(T,ω))H(T,ω))1D(ω).
(2.3)

1We call the possibility of failing to return the collateral ‘collateral default’.
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Note that, although we can omit the default indicator function 1D(ω) in (2.3), we incorporate it in
C(T,ω;φ) for the following discussion.

Finally, we provide the payoff function including a collateral agreement. The buyer of the
claim receives full payment H if the seller does not default, and the long-holder obtains the default
payment η ×H and payment C from the collateral agreement. Therefore, the payoff function with
a collateral agreement is given by

g(T,ω) =H(T,ω)(1− 1D(ω)) + η(T,ω)H(T,ω)1D(ω) + C(T,ω;φ)

=Ĥ(T,ω) + C(T,ω;φ).
(2.4)

The last equality in (2.4) is from (2.1) and (2.3). By the economic premium principle, the price p
of claim g is given by

p = E[E(T )g(T )]. (2.5)

The pricing formula (2.5) shows that the defaultable claim Ĥ and the collateral value C are given by
the pricing kernel. Note that pricing formula (2.5) does not reflect the counterparty risk constraint.
For the pricing formula under the counterparty risk constraint, we also provide an equilibrium
pricing rule to incorporate the constraint.

2.4 Counterparty Risk Constraint

In this section, we introduce a counterparty risk constraint. That is, the investor with this constraint
should trade derivatives such that the amount of counterparty risk is less than or equal to the
allocated risk capital. In this work, the buyer of the option is only exposed the counterparty risk.
The buyer, hence, behaves under such a constraint.

We suppose that the counterparty risk is evaluated by CVA criterion. This criterion has recently
been become popular among financial institutions, where the risk management division requires the
amount of the CVA from traders who enter derivative contracts with positive exposure in order to
hedge against counterparty risks. For more detail, we recommend Brigo and Masetti (2005), Fujii
and Takahashi (2013) or Gregory (2010).

While the CVA increases with an increase in the counterparty risk, it is reduced by collateraliza-
tion. Thus, the CVA is defined as the difference between payoffs with or without the counterparty
risk minus the collateral amount. That is, the CVA with the collateral for k-claims is

CVA(k,φ) =E[E(T )kH(T,ω)]− E[E(T )kĤ(T,ω)]− E[E(T )kC(T,ω;φ)]

=kmax(E[E(T ){(1− η(T,ω))H(T,ω)− φBTV0}1D(ω)], 0)

=kCVA(φ),

where CVA(φ) = max(E[E(T ){(1− η(T,ω))H(T,ω)− φBTV0}1D(ω)], 0).
We exogenously provide the allocated risk capital for the counterparty risk L(> 0). The buyer

of the option then has to order the derivative contract such that

CVA(k,φ) = kCVA(φ) ≤ L.

From this inequality, the risk constraint is relaxed with an increase in L. Now, we suppose that
threshold M is increased. The increase in M reduces the net exposure V0, and this decreases the
required collateral amount, and simultaneously increases CVA(φ), since

max(x, 0) ≥ max(y, 0),

for any x ≥ y. Thus, when the threshold M increases, the amount of the counterparty risk reaches
L and the counterparty risk constraint is bound.
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2.5 Participants’ Preferences and Wealth

In order to derive the demand and supply functions, we consider utility-maximization problems for
total wealth, consisting of a bank account, the risky asset, and the derivative. We denote W j

t as
the wealth of participant j (j = l, s) at time t. In addition, the amount invested in the risky asset
by participant j is denoted by πj , and the volume of the claim participant j is willing to trade is
denoted by kj . We assume that kj > 0 for each j ∈ {l, s}.

2.5.1 Participants’ Preferences

We suppose that participants’ preferences are measured by the utility function U j (j = l, s), and that
participants have an exponential utility; that is, the utility function of participant j is represented
by

U j(x) = − 1

γj

(
1− e−γjx

)
, (2.6)

for x ≥ 0, where γj is the risk-aversion coefficient of participant j.

2.5.2 Buyer’s Wealth Equation

The buyer with initial wealth X l
0 = xl(> 0) invests money in the risky asset and the derivative

contract. The buyer might have an incentive to purchase an option to hedge the risk of the risky
asset. The rest of the money is deposited in the risk-free asset. Note that the buyer has positive
exposure for the derivative contract and she/he must receive the collateral φV0 per claim. Then,
the buyer’s amount wl invested in the risk-free asset is

wl = xl −
πl

Sl
0

Sl
0 − klp+ klφV0 = xl − πl − kl(p− φV0).

Next, at maturity, the buyer should return the posted collateral φBTV0 to the seller if she/he does
not default. On the one hand, the buyer pays even if the seller defaults, whenever the collateral
amount is larger than the default loss; that is, φBTV0 > (1 − η)H(T ). Therefore, the terminal
wealth for the buyer is

X l
T (ω) =wlBT +

πl

Sl
0

Sl
T (ω) + klĤ(T,ω)− klφBTV0(1− 1D(ω))

−
{
kl(φBTV0 − (1− η)H(T,ω))1D(ω), φBTV0 > (1− η(T,ω))H(T,ω)

0, φBTV0 ≤ (1− η(T,ω))H(T,ω)

=(xl − πl − klp)BT +
πl

Sl
0

Sl
T (ω) + klĤ(T,ω) + kl min(φBTV0, (1− η(T,ω))H(T,ω))1D(ω)

=(xl − πl − klp)BT +
πl

Sl
0

Sl
T (ω) + kl(Ĥ(T,ω) + C(T,ω;φ))

=(xl − πl − klp)BT +
πl

Sl
0

Sl
T (ω) + klg(T,ω).

(2.7)

2.5.3 Seller’s Wealth Equation

The seller with initial wealth Xs
0 = xs(> 0) invests money in the risky asset in the same way as

the buyer and sells the option. On the other hand, the position of the claim and the delivery of
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collateral are opposite to the buyer’s case. The terminal wealth of the seller, therefore, is

Xs
T (ω) = (xs − πs + ksp)BT +

πs

Ss
0

Ss
T − ksg(T,ω). (2.8)

2.6 Pricing Kernel

Lastly, we determine the pricing kernel E . The pricing kernel is derived from the utility-maximization
problem and the definition of the equilibrium.

We first set the utility-maximization problems. We suppose that market participant j determines
the contract volume kj of the claim to maximize the (expected) utility for her/his terminal wealth.
That is, the maximization problem of participant j is defined by

max
kj

E[U j(Xj
T )], (2.9)

for j = l, s.
Next, we define the market equilibrium.

Definition 2.1 (Market Equilibrium). The market is in equilibrium if

1.
∑

j∈{l,s}(xj − πj) = R0,

2.
∑

j∈{l,s}
πj

Sj
0

Sj
T (ω) = RT (ω),

3.
∑

j∈{l,s} δjkj = 0,

where kj ≥ 0 for all j.

From (2.7) and (2.8), we represent

Xj
T (ω) = (xj − πj − δjkjp)BT +

πj

Sj
0

Sj
T (ω) + δjkjg(T,ω)

for j = l, s, where p is given in (2.5). Solving utility-maximization problem (2.9) with respect to kj
and using Definition 2.1 provides the pricing kernel E . We omit the proof of theorem, which follows
the proof of Theorem 3.1 in Takino (2016a).

Theorem 2.1. Under market equilibrium (Definition 2.1), the pricing kernel E is given by

E(T ) = e−γRT (ω)

BTE[e−γRT ]
, (2.10)

where 1
γ =

∑J
j=1

1
γj
.

Pricing kernel E is used to determine the value of the MtM Ṽ and CVA(k,φ). Unfortunately, we
cannot determine the equilibrium volume of the option contract. In order to derive the formula of the
equilibrium volume explicitly, we derive the equilibrium from a linearly approximated exponential
utility (2.6) in the next section. This also provides a pricing formula under the counterparty risk
constraint.
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3 Demand/Supply Functions and Market Equilibrium

In this section, we derive the equilibrium price and volume for the option with a collateral agreement
under the counterparty risk constraint. The demand and supply functions are obtained by solving
the investors’ utility-maximization problem with respect to claim volume kj (j = l, s). Recall,
participants have exponential utility (2.6). By taking the Taylor expansion of the expected utility
for small γj (j = l, s), we have the mean-variance form of the expected exponential utility,

E[U j(Xj
T )] = E[Xj

T ]−
γj
2
V ar[Xj

T ], (3.1)

where γj is the risk aversion of participant j. Acharya and Bisin (2014), Bessembinder and Lemmon
(2002), and Takino (2016b) used the mean-variance criterion as the expected utility of an investor
to derive the equilibrium price and volume for assets.

3.1 Demand Functions

We first formulate the buyer’s utility maximization problem under the counterparty risk constraint.
The buyer’s problem under the constraint is

max
kl

E[U l(X l
T )]

s.t. klCVA(φ) ≤ L.
(3.2)

The expected utility of the buyer for terminal wealth (2.7) is given by

E[U l(X l
T )] = E[X l

T ]−
γl
2
V ar[X l

T ],

where
E[X l

T ] = (xl − πl − klp)BT +
πl

Sl
0

E[Sl
T ] + klE[g(T )],

V ar[X l
T ] =

(
πl

Sl
0

)2

V ar[Sl
T ] + k2l V ar[g(T )] + 2

πl

Sl
0

klCov[Sl
T , g(T )].

We first define the Lagrange function Ll as

Ll = E[U l(X l
T )] + λl(L− klCVA(φ)).

The KKT condition for the maximization problem (3.2) is given by

∂Ll

∂kl
= ∂lE[U l(X l

T )]− λlCVA(φ) = 0 (3.3)

∂Ll

∂λl
= L− klCVA(φ) ≥ 0 (3.4)

λl
∂Ll

∂λl
= λl{L− klCVA(φ)} = 0, (3.5)

where λl(≥ 0) is a Lagrange multiplier and

∂lE[U l(X l
T )] :=

∂E[U l(X l
T )]

∂kl
= −pBT + E[g(T )]− γlklV ar[g(T )]− γl

πl

Sl
0

Cov[Sl
T , g(T )].

The buyer’s problem is solved as follows.
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(1)λl > 0 Case

When λl > 0, from (3.5), we have
L− klCVA(φ) = 0. (3.6)

By the assumption of L > 0, (3.6) leads to CVA(φ) > 0. From (3.6), kl is given by

kl =
L

CVA(φ)
.

From (3.3), we have

λl =
∂lE[U l(X l

T )]

CVA(φ)
. (3.7)

From CVA(φ) > 0, if ∂lE[U l(X l
T )] > 0, then we have

λl > 0,

and the optimal kl is given by

k∗l =
L

CVA(φ)
. (3.8)

(2)λl = 0 (or ∂lE[U l(X l
T )] ≤ 0) Case

If ∂lE[U l(X l
T )] ≤ 0, then, from (3.7) and the fact that λl ≥ 0, we have λl = 0. This time, by (3.3),

the optimal kl is the solution of
∂lE[U l(X l

T )] = 0.

That is, the optimal kl is

k∗l = − 1

γlV ar[g(T )]

{
pBT − E[g(T )] + γl

πl

Sl
0

Cov[Sl
T , g(T )]

}
. (3.9)

3.2 Supply Function

The supply function is obtained from the seller’s utility-maximization problem for her/his terminal
wealth. If the seller has negative exposure, then she/he is not confined by the counterparty risk
constraint2. Therefore, the risk constraint for the seller is released and her/his maximization
problem is given by

max
ks

E[Us(Xs
T )].

The expected utility of the seller for (2.8) is given by

E[Us(Xs
T )] = E[Xs

T ]−
γs
2
V ar[Xs

T ],

where
E[Xs

T ] = (xs − πs + ksp)BT +
πs

Ss
0

E[Ss
T ]− ksE[g(T )],

2In fact, the seller’s CVA is nonpositive for the option contract. Thus, the constraint ksCVA(φ) ≤ L is always
satisfied even if the seller is imposed the counterparty risk constraint.
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V ar[Xs
T ] =

(
πs

Ss
0

)2

V ar[Ss
T ] + k2sV ar[g(T )]− 2

πs

Ss
0

ksCov[Ss
T , g(T )].

From the first-order condition, we have

pBT − E[g(T )]− γsksV ar[g(T )] + γs
πs

Ss
0

Cov[Ss
T , g(T )] = 0.

The supply function is thus

k∗s =
1

γsV ar[g(T )]

{
pBT − E[g(T )] + γs

πs

Ss
0

Cov[Ss
T , g(T )]

}
.

3.3 Equilibria

We provide the equilibrium price and volume using the demand and supply functions derived earlier.
The demand function used to derive the equilibria differs from the value of ∂lE[U l(X l

T )] or λl.

(1)∂lE[U l(X l
T )] > 0 (λl > 0) Case

The demand function is given by (3.8). From the equilibrium condition k∗l = k∗s , the equilibrium
price p∗ is

p∗ =
1

BT
E[g(T )]− γs

BT

πs

Ss
0

Cov[Ss
T , g(T )] +

γs
BT

L

CVA(φ)
V ar[g(T )]. (3.10)

The equilibrium volume k∗ is

k∗ =
L

CVA(φ)
. (3.11)

Remark 3.1. When CVA(φ) = 0, the price and volume are not finite. However, CVA(φ) = 0 and
k2l CVA

2(φ) < L2 are equivalent because L > 0. This leads to that λl = 0 for the KKT condition,
and then the case of ∂lE[U l(X l

T )] > 0 is rejected.

(2)∂lE[U l(X l
T )] ≤ 0 (λl = 0) Case

The demand function is given by (3.9). From the equilibrium condition kl = ks, the equilibrium
price p∗ is

p∗ =
1

BT
E[g(T )]− 1

BT
γCov[RT , g(T )], (3.12)

where RT is defined in Definition 2.1. Substituting (3.12) into (3.9) yields the equilibrium volume
k∗,

k∗ =
γs

πs
Ss
0
Cov[Ss

T , g(T )]− γl
πl

Sl
0
Cov[Sl

T , g(T )]

(γl + γs)V ar[g(T )]
. (3.13)

3.3.1 Sensitivity Analysis

We can easily observe the affects of the counterparty risk constraint on the equilibria without relying
on the numerical scheme in the case of ∂lE[U l(X l

T )] > 0. This case corresponds to klCVA(φ) = L;
that is, the risk constraint is bound.
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First, we consider the influence on the volume. The demand function and equilibrium volume
are equal:

k∗l = k∗ =
L

CVA(φ)
.

Differentiating k∗l and k∗ with respect to L, we have

∂k∗l
∂L

=
∂k∗

∂L
=

1

CVA(φ)
> 0.

Thus, the risk capital L increases the demand for the option and its equilibrium price. On the other
hand, CVA(φ) is a decreasing function of the coverage ratio φ. This implies that the collateral
amount increases the demand for the option and its equilibrium volume.

Next, we consider the effect on the price. Differentiating p∗ in (3.10) with respect to L, we have

∂p∗

∂L
=

γs
BT

V ar[g(T )]

CVA(φ)
> 0.

Thus, the risk capital L increases the equilibrium price. This effect is due to the change of demand.
The increase in the risk capital L increases the demand, while keeping the supply constant.

Based on the analysis in this section, we examine the effect of the counterparty risk constraint
and the collateralization on the option contract when the counterparty risk constraint is binding. If
the institution provides more than the counterparty risk capital to its buyer, the option price and
volume increase. These trends arise from the change of demand because the supply is independent
of L in our model. On the other hand, for the volume of the contract, if the seller accepts the
requirement from the buyer of a higher collateral amount, then the traded amount increases.

In addition to these results, we are interested in the effect of the collateral amount on the equilib-
rium price when the risk constraint is binding, and the effect of the counterparty risk constraint and
the collateralization on the equilibrium price and volume when the risk constraint is not binding.
These points are examined in the following numerical example.

4 Numerical Results

In this section, we observe the effects of collateralization, the risk capital, and the threshold on the
equilibrium of the option contract. In the previous section, we observed the influence of the risk
capital on the equilibrium when the risk constraint is binding; that is, the case of klCVA(φ) = L.
The remaining effects are examined in this section.

4.1 Model and Parameters

In order to implement our pricing model, we explicitly introduce stochastic price processes for
the assets, following Takino (2016b). We consider a filtered probability space (Ω,F , P,Ft) for
0 ≤ t ≤ T and a three-dimensional standard Brownian motion W = (W1,W2,W3). The filtration
Ft is generated by Wt. Then, we formulate the price processes of assets as follows:

dYu =Yu(µY du+ σY dW1u), Y0 = Y (> 0),

dSl
u =Sl

u{µldu+ σl(ρldW1u +
√

1− ρ2lW2u)}, Sl
0 = Sl(> 0),

dSs
u =Ss

u{µsdu+ σs(ρsdW1u +
√

1− ρ2sW3u)}, Ss
0 = Ss(> 0),

(4.1)
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for 0 ≤ u ≤ T , where µY , σY , µj (j = l, s), σj (j = l, s), and ρj (j = l, s) are constant, and ρj shows
the correlation between the asset price for participant j and the underlying asset of the derivatives.

We implement our equilibrium model for the process (4.1) using a Monte-Carlo simulation. The
parameters used in the simulation are γl = 0.002, µl = 0.1, σl = 0.2, Sl

0 = 4000, πl = 2000,
γs = 0.001, µs = 0.4, σs = 0.6, Ss

0 = 4000, πs = 2000, Y0 = 100.0, µY = 0.1, σY = 0.15, r = 0.05,
and T = 1.0. We consider a European call option with strike price K and its payoff function is

H(T,ω) = max(YT (ω)−K, 0).

We set K = 70.0. That is, we consider an in-the-money option. The default event of the option
seller is supposed to be determined by the terminal asset price held by the seller, as in Henderson
and Liang (2016). That is, the default indicator function is defined as

1D(ω) = 1Ss
T (ω)<Ls

.

We set ηs = 1.0 and Ls = 3000. The simulation is run 1,000,000 times.

4.2 Sensitivity Analysis

Our main purpose is to verify the influence of collateralization on the derivative contract. To this
end, we solve the equilibrium formulae of the option contract by changing the coverage ratio φ for
each risk capital L and threshold M .

4.2.1 Effect of Risk Capital L

We first examine the equilibrium price and volume of the option for each risk capital L without
the threshold; that is, we set M ≡ 0. In this implementation, we observe the influence of the risk
capital on the equilibria only.

Table 1 and Table 2 respectively show the equilibrium volume and price for each (ρl, ρs) and L.
We examine for L = 1.0, 10.0, 100.0. Recall, the risk constraint in our study is

CVA(φ) ≤ L.

Thus, whether the option buyer exposed to a counterparty risk has the restriction of the counter-
party risk imposed, depends on φ and L. The increase in φ reduces the counterparty risk. Hence, if
we increase φ, then the constraint of counterparty risk is relaxed, and the amount of counterparty
risk is less than L. ‘Flag’ in the tables indicates whether the counterparty risk constraint is bind-
ing. The number 2 means that the counterparty risk constraint is binding (i.e. CVA(φ) = L). The
numbers 1 and 3 show that the counterparty risk constraint is not binding (i.e. CVA(φ) < L), that
is, the situations with no risk constraint. For example, for L = 1.0, 10.0 in the upper table (the case
of (ρl, ρs) = (−0.75, 0.75)) of Table 1, Flag changes from 2 to 1 when φ increases. In addition, when
L becomes large, Flag changes from 2 to either 1 or 3, since the restriction is relaxed, as mentioned
in Section 2.4. For example, at φ = 15%, when (ρl, ρs) = (−0.75, 0.75), Flag is 3 when L = 100.0,
while Flag is 2 for L = 1.0, 10.0. In the upper table in Table 1, for instance, the risk constraint
is not binding for all φ when L = 100, while the risk constraint is binding for 0% ≤ φ ≤ 15% at
L = 1.0, 10.0.

We first consider the effect of L on the equilibrium volume for the option contract (Table 1).
We observe significant differences in volume between the bound risk constraint (Flag 2) and when
it is not binding (Flag 1 and 3). Let’s consider the case of (ρl, ρs) = (−0.75, 0.75) (the upper table

13



ρl = −0.75, ρs = 0.75
L = 1.0 L = 10.0 L = 100

φ Flag Volume Flag Volume Flag Volume

0% 2 0.46 2 4.65 3 38.61
5% 2 0.65 2 6.46 3 39.33
10% 2 1.07 2 10.73 3 39.93
15% 2 3.38 2 33.77 3 40.25
20% 1 40.58 1 40.58 1 40.58
25% 1 40.62 1 40.62 1 40.62
30% 1 40.65 1 40.65 1 40.65
35% 1 40.64 1 40.64 1 40.64
40% 1 40.78 1 40.78 1 40.78
45% 1 40.73 1 40.73 1 40.73
50% 1 40.72 1 40.72 1 40.72

ρl = −0.5, ρs = 0.5
L = 1.0 L = 10.0 L = 100

φ Flag Volume Flag Volume Flag Volume

0% 2 0.32 2 3.21 3 27.29
5% 2 0.41 2 4.12 3 27.42
10% 2 0.58 2 5.83 3 27.54
15% 2 1.02 2 10.16 3 27.51
20% 2 3.82 3 27.57 3 27.57
25% 1 27.38 1 27.38 1 27.38
30% 1 27.30 1 27.30 1 27.30
35% 1 27.18 1 27.18 1 27.18
40% 1 27.24 1 27.24 1 27.24
45% 1 27.12 1 27.12 1 27.12
50% 1 27.09 1 27.09 1 27.09

ρl = −0.25, ρs = 0.25
L = 1.0 L = 10.0 L = 100

φ Flag Volume Flag Volume Flag Volume

0% 2 0.25 2 2.48 3 16.28
5% 2 0.30 2 3.04 3 15.92
10% 2 0.40 2 4.01 3 15.61
15% 2 0.59 2 5.90 3 15.28
20% 2 1.12 2 11.18 3 15.03
25% 2 8.53 3 14.64 3 14.64
30% 1 14.39 1 14.39 1 14.39
35% 1 14.13 1 14.13 1 14.13
40% 1 14.07 1 14.07 1 14.07
45% 1 13.85 1 13.85 1 13.85
50% 1 13.78 1 13.78 1 13.78

Table 1: Equilibrium volume for each L without the threshold. “Flag” shows whether the coun-
terparty risk constraint is bound or not. Flag is 2 if the counterparty risk constraint is bound (i.e.
CVA(φ) = L), and Flag is 1 or 3 when the risk constraint is not bound (i.e. CVA(φ) < L).
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ρl = −0.75, ρs = 0.75
L = 1.0 L = 10.0 L = 100

φ Flag Price Flag Price Flag Price

0% 2 13.80 2 15.06 3 25.27
5% 2 14.73 2 16.41 3 25.90
10% 2 15.45 2 18.16 3 26.33
15% 2 16.62 2 24.93 3 26.70
20% 1 26.97 1 26.97 1 26.97
25% 1 27.13 1 27.13 1 27.13
30% 1 27.29 1 27.29 1 27.29
35% 1 27.36 1 27.36 1 27.36
40% 1 27.29 1 27.29 1 27.29
45% 1 27.36 1 27.36 1 27.36
50% 1 27.37 1 27.37 1 27.37

ρl = −0.5, ρs = 0.5
L = 1.0 L = 10.0 L = 100

φ Flag Price Flag Price Flag Price

0% 2 20.24 2 21.10 3 28.23
5% 2 21.24 2 22.30 3 28.96
10% 2 21.97 2 23.43 3 29.48
15% 2 22.68 2 25.18 3 29.91
20% 2 23.90 3 30.29 3 30.29
25% 1 30.56 1 30.56 1 30.56
30% 1 30.79 1 30.79 1 30.79
35% 1 30.97 1 30.97 1 30.97
40% 1 30.96 1 30.96 1 30.96
45% 1 31.10 1 31.10 1 31.10
50% 1 31.13 1 31.13 1 31.13

ρl = −0.25, ρs = 0.25
L = 1.0 L = 10.0 L = 100

φ Flag Price Flag Price Flag Price

0% 2 26.50 2 27.14 3 31.08
5% 2 27.55 2 28.31 3 31.89
10% 2 28.35 2 29.33 3 32.49
15% 2 29.04 2 30.46 3 32.97
20% 2 29.76 2 32.42 3 33.44
25% 2 32.18 3 33.79 3 33.79
30% 1 34.08 1 34.08 1 34.08
35% 1 34.34 1 34.34 1 34.34
40% 1 34.41 1 34.41 1 34.41
45% 1 34.61 1 34.61 1 34.61
50% 1 34.68 1 34.68 1 34.68

Table 2: Equilibrium price for each L without the threshold. “Flag” shows whether the counterparty
risk constraint is bound or not. Flag is 2 if the counterparty risk constraint is bound (i.e. CVA(φ) =
L), and Flag is 1 or 3 when the risk constraint is not bound (i.e. CVA(φ) < L).
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in Table 1) as an example. From the table, the risk constraint is binding for 0% ≤ φ ≤ 15% when
L = 1.0, and the volume takes a value from 0.46 to 3.38. On the one hand, for 20% ≤ φ ≤ 50% at
L = 1.0, where the risk constraint is not binding, the volume is between 40.58 and 40.78. For other
L, the volumes with no bound risk constraint are larger than the volumes when the risk constraint
is binding. These characteristics hold for the case of (ρl, ρs) = (−0.5, 0.5). Therefore, for small φ,
the increase in φ increases the traded amount. Recall, the increase in φ relaxes the risk constraint.
Therefore, the volume of the claim increases through relaxing the risk constraint when the coverage
ratio φ increases. It is also interpreted that greater collateralization is preferred to increase liquidity
when the participant is confined by the counterparty risk constraint. Furthermore, from the table,
we observe that the volume at L = 100 dominates the volume at L = 10.0, and the volume at
L = 10.0 dominates the volume at L = 1.0. These properties hold for other (ρl, ρs). Thus, the
increase in L increases the volume of the claim.

Next, we consider the effect of L on the option price (Table 2). The table shows that the
equilibrium price monotonically increases with the increase in φ, for all L and (ρl, ρs). From the
fact that the increase in φ relaxes the risk constraint, we conclude that the price of the claim
increases through easing the risk constraint when the coverage ratio φ increases, as in the case of
volume. We also have the following result. The prices with lower L are dominated the prices with
higher L. For example, in the case of (ρl, ρs) = (−0.75, 0.75), the prices with L = 1.0 are lower
than the prices with L = 10.0, and the prices with L = 10.0 are lower than the prices with L = 100.
This feature holds for other (ρl, ρs). Hence, the increase in risk capital L increases the option price.

4.2.2 Effect of Threshold M

We consider the effect of the threshold M on the derivative contract. In this simulation, we fix
the allocated risk capital L = 10.0. Table 3 and Table 4 respectively show equilibrium volume and
price when threshold M is applied.

As shown in Section 2.4, the increase in the thresholdM increases the counterparty risk measured
by the CVA. Thus, the increase in threshold M makes the counterparty risk constraint binding
(denoted by Flag 2 in Tables 3, 4). In fact, for the case of (ρl, ρs) = (−0.75, 0.75), the constraint
is bound for 0% ≤ φ ≤ 15% at M = 0.0, 0% ≤ φ ≤ 35% at M = 20.0, and all φ at M = 40.0.
That is, the range of φ where the risk constraint is binding expands with the increase in M . For
other cases of (ρl, ρs), the results are the same as the case of (ρl, ρs) = (−0.75, 0.75). We also have
non-collateralized transactions for large M (not shown). At M = 40, when (ρl, ρs) = (−0.75, 0.75),
we have

V0 = 0 or Ṽ0 < M,

for all φ. Then, the equilibrium formulae are independent of the coverage ratio φ and the amount
of collateral. In the columns of M = 40 at (ρl, ρs) = (−0.75, 0.75) in Tables 3, 4, the volume and
price do not depend on φ.

We first consider the effect of M on the equilibrium volume of the option contract. Table 3
demonstrates a quantitative characteristic of volume when the risk constraint is and is not binding.
As observed in the previous section, the volumes under the bound risk constraint are lower than
those with the unbound constraint. For example, for 20% ≤ φ ≤ 35% in the case of (ρl, ρs) =
(−0.75, 0.75), the volumes under M = 0.0 are larger than those under M = 20.0. For 40% ≤
φ ≤ 50%, the volumes under M = 0.0 and M = 20.0 are larger than those under M = 40.0.
Since the increase in the threshold makes the risk constraint binding because of deteriorating
counterparty risk, the increase in the threshold decreases the volume of the option. Furthermore,
for 0% ≤ φ ≤ 15% in the case of (ρl, ρs) = (−0.75, 0.75), the volumes under M = 0.0 dominate
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ρl = −0.75, ρs = 0.75
M = 0.0 M = 20.0 M = 40.0

φ Flag Volume Flag Volume Flag Volume

0% 2 4.65 2 4.65 2 4.65
5% 2 6.46 2 5.19 2 4.61
10% 2 10.73 2 5.91 2 4.59
15% 2 33.77 2 6.98 2 4.63
20% 1 40.58 2 8.39 2 4.62
25% 1 40.62 2 10.49 2 4.60
30% 1 40.65 2 13.93 2 4.60
35% 1 40.64 2 21.33 2 4.61
40% 1 40.78 3 40.40 2 4.60
45% 1 40.73 1 40.46 2 4.63
50% 1 40.72 1 40.53 2 4.61

ρl = −0.5, ρs = 0.5
M = 0.0 M = 15.0 M = 30.0

φ Flag Volume Flag Volume Flag Volume

0% 2 3.21 2 3.21 2 3.21
5% 2 4.12 2 3.66 2 3.29
10% 2 5.83 2 4.28 2 3.39
15% 2 10.16 2 5.24 2 3.53
20% 3 27.57 2 6.70 2 3.67
25% 1 27.38 2 9.10 2 3.78
30% 1 27.30 2 14.34 2 3.93
35% 1 27.18 3 27.43 2 4.11
40% 1 27.24 1 27.52 2 4.26
45% 1 27.12 1 27.41 2 4.48
50% 1 27.09 1 27.38 2 4.67

ρl = −0.25, ρs = 0.25
M = 0.0 M = 5.0 M = 10.0

φ Flag Volume Flag Volume Flag Volume

0% 2 2.48 2 2.48 2 2.48
5% 2 3.04 2 2.94 2 2.85
10% 2 4.01 2 3.69 2 3.42
15% 2 5.90 2 4.96 2 4.28
20% 2 11.18 2 7.56 2 5.71
25% 3 14.64 3 14.84 2 8.37
30% 1 14.39 1 14.60 3 14.83
35% 1 14.13 1 14.34 3 14.58
40% 1 14.07 1 14.27 1 14.51
45% 1 13.85 1 14.04 1 14.27
50% 1 13.78 1 13.94 1 14.17

Table 3: Equilibrium volume for each M at L = 10.0. “Flag” shows whether the counterparty risk
constraint is bound or not. Flag is 2 if the counterparty risk constraint is bound (i.e. CVA(φ) = L),
and Flag is 1 or 3 when the risk constraint is not bound (i.e. CVA(φ) < L).
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ρl = −0.75, ρs = 0.75
M = 0.0 M = 20.0 M = 40.0

φ Flag Price Flag Price Flag Price

0% 2 15.06 2 15.06 2 15.06
5% 2 16.41 2 15.58 2 15.08
10% 2 18.16 2 16.01 2 14.98
15% 2 24.93 2 16.61 2 15.01
20% 1 26.97 2 17.25 2 15.00
25% 1 27.13 2 18.06 2 14.98
30% 1 27.29 2 19.29 2 15.08
35% 1 27.36 2 21.49 2 15.06
40% 1 27.29 3 26.68 2 14.92
45% 1 27.36 1 26.85 2 14.99
50% 1 27.37 1 26.93 2 14.97

ρl = −0.5, ρs = 0.5
M = 0.0 M = 15.0 M = 30.0

φ Flag Price Flag Price Flag Price

0% 2 21.10 2 21.10 2 21.10
5% 2 22.30 2 21.81 2 21.31
10% 2 23.43 2 22.38 2 21.40
15% 2 25.18 2 23.05 2 21.55
20% 3 30.29 2 23.82 2 21.71
25% 1 30.56 2 24.82 2 21.87
30% 1 30.79 2 26.56 2 22.08
35% 1 30.97 3 30.33 2 22.26
40% 1 30.96 1 30.39 2 22.27
45% 1 31.10 1 30.60 2 22.53
50% 1 31.13 1 30.70 2 22.65

ρl = −0.25, ρs = 0.25
M = 0.0 M = 5.0 M = 10.0

φ Flag Price Flag Price Flag Price

0% 2 27.14 2 27.14 2 27.14
5% 2 28.31 2 28.16 2 28.02
10% 2 29.33 2 29.04 2 28.75
15% 2 30.46 2 29.95 2 29.49
20% 2 32.42 2 31.18 2 30.37
25% 3 33.79 3 33.56 2 31.52
30% 1 34.08 1 33.86 3 33.59
35% 1 34.34 1 34.13 3 33.87
40% 1 34.41 1 34.22 1 33.98
45% 1 34.61 1 34.45 1 34.22
50% 1 34.68 1 34.54 1 34.34

Table 4: Equilibrium price for each M at L = 10.0. “Flag” shows whether the counterparty risk
constraint is bound or not. Flag is 2 if the counterparty risk constraint is bound (i.e. CVA(φ) = L),
and Flag is 1 or 3 when the risk constraint is not bound (i.e. CVA(φ) < L).
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ρl = −0.75 ρl = −0.5 ρl = −0.25
ρs = 0.75 ρs = 0.5 ρs = 0.25

γl Price Volume Price Volume Price Volume

0.001 28.33 48.79 30.47 34.89 32.53 21.40
0.002 25.27 38.58 28.25 27.23 31.11 16.21
0.003 23.73 33.49 27.15 23.44 30.42 13.66
0.004 22.81 30.44 26.42 21.19 29.91 12.18
0.005 22.19 28.40 25.97 19.67 29.61 11.16
0.006 21.76 26.96 25.65 18.62 29.40 10.48
0.007 21.39 25.86 25.41 17.79 29.27 9.91
0.008 21.21 25.00 25.29 17.15 29.20 9.47
0.009 20.90 24.34 25.03 16.66 29.01 9.16
0.010 20.75 23.76 24.91 16.22 28.92 8.85

Table 5: Equilibrium price and volume without collateral agreement.

those under M = 20.0. For 0% ≤ φ ≤ 35% in the case of (ρl, ρs) = (−0.75, 0.75), the volumes
under M = 20.0 dominate those under M = 40.0. That is, when the risk constraint is binding, the
volume with a higher threshold M is larger than the volume under a lower threshold M . These
properties stand for other sets of (ρl, ρs). Therefore, we can conclude that the increase in the
threshold decreases the volume of the claim.

Next, we consider the influence on the equilibrium price (Table 4). We consider the case of
(ρl, ρs) = (−0.75, 0.75) as an example. The prices for M = 0.0 are larger than the prices for
M = 20.0, for all φ, and the prices for M = 20.0 are larger than the prices for M = 40.0, for
all φ. These characteristics are observed for other cases of (ρl, ρs). Therefore, the increase in the
threshold decreases the price of the claims.

4.3 Proxy for Risk Aversion

The previous sections show that an increase in L increases both the volume and the price of the
claim, and an increase in M decreases both the volume and the price of the claim. That is, an
increase in risk capital or a decrease in the threshold increases the market size3 of the option
contract under our counterparty risk model. Conversely, we can decrease risk capital or increase
the threshold if we want to prevent bulging in the market. From this result, just as risk capital
endogenously leads to a spillover effect (Shin 2010), the amount of risk capital affects the behaviour
of investors in the derivatives market too.

The risk-averse coefficient shows the attitude to risk and influences the behaviour of investors
in financial markets. In fact, our equilibrium formulae include risk aversion γj (j = l, s) of the
market participants. Therefore, we investigate how the risk aversion of participants influences the
equilibria. The goal of this examination is to verify whether the allocation of risk capital and the
level of the threshold are proxies of risk aversion.

3The market size is defined by the product of price and volume.
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4.3.1 Equilibrium Formulae without Collateralization

We investigate the effect of risk aversion on the derivative transaction. To this end, we reconstruct
the equilibrium formulae of the claim, excluding the influence of collateralization; that is, we derive
the equilibrium formulae under counterparty risk without the collateral agreement.

First, the terminal wealth of participant j (j = l, s) without collateralization is

W j
T (ω) = wjBT +

πj

Sj
0

Sj
T (ω) + δjkjĤ(T,ω),

where
wj = xj − πj − δjkjp,

δl = 1, and δs = −1.
Next, we derive the demand and supply functions for the claim, and the market equilibrium.

As in Section 3, we give the demand and supply functions by solving utility-maximization prob-
lems with a mean-variance criterion and the equilibrium price and volume formulae for the claim.
Consequently, we have the equilibrium price,

p∗ =
1

BT
E[Ĥ(T )]− 1

BT
γCov[RT , Ĥ(T )], (4.2)

and the equilibrium volume,

k∗ =
γs

πs
Ss
0
Cov[Ss

T , Ĥ(T )]− γl
πl

Sl
0
Cov[Sl

T , Ĥ(T )]

(γl + γs)V ar[Ĥ(T )]
. (4.3)

4.3.2 Numerical Result

Table 5 shows the result of the Monte-Carlo simulation for the equilibrium price (4.2) and volume
(4.3) with stochastic model (4.1). We only examine changing the risk aversion γl of the buyer
because only the buyer of the option has counterparty risk in our model.

From the table, we observe that the increase in γl decreases both the price and volume of the
claim for each (ρl, ρs). For example, in the case of (ρl, ρs) = (−0.75, 0.75), the price monotonically
decreases from 28.33 to 20.75, and the volume monotonically decreases from 48.79 to 23.76 when
γl increases from 0.001 to 0.010. This characteristic holds for other sets of (ρl, ρs). Thus, when the
buyer becomes more risk averse in our option market, the market reduces in size. Combining the
above results, in order to avoid a boom or bubble, limiting risk capital or increasing the threshold
have the equivalent effect of investors becoming more risk averse. Who, however, can control an
investor’s attitude to risk? It might be difficult to do so in practice. Our study implies that risk
capital and the threshold can be proxies for the risk aversion of investors.

5 Summary

We consider an equilibrium model for an OTC option market with counterparty risk, collateral-
ization, the counterparty risk constraint, and the threshold. Our study verified the influences of
collateralization, the risk constraint, and the threshold on the derivative contract.

We obtain two main results. The first is that an increase in collateral increases the price and
volume of the option for relatively small collateral amounts. The second is that an increase in risk

20



capital or a decrease in the threshold increases the price and volume of an option. The key to these
results is whether the risk constraint is binding. In fact, our numerical result shows that the price
and volume when the risk constraint is not binding are larger than when it is binding. An increase
in collateral reduces the counterparty risk, which relaxes the risk constraint. The reason why the
increase in risk capital eases the risk constraint is straightforward. However, the influence of the
threshold might seem unintuitive. An increase in the threshold provides more opportunity to sell
the option because the seller is no longer required to provide collateral. However, this results in
deteriorating counterparty risk owed by the option buyer. Conversely, a decrease in the threshold
increases the required collateral amount and relaxes the risk constraint. The first statement has
been shown in a previous study. This study, however, explicitly demonstrates the same finding from
the viewpoint of the risk constraint. The second assertion implies that if we want to increase the
market size of the OTC derivative market, we should have more risk capital for counterparty risk
or we should reduce the threshold.

We also analysed the influence of risk aversion on the option contract without collateralization.
Here, we only examined the risk aversion of the buyer because she/he has a positive exposure in
the derivative contract. From our numerical results, when the buyer of the option becomes more
risk averse, the size of the option market decreases. This coincides with the effect of the decrease
in risk capital or the increase in the threshold. That is, we provide evidence that the allocation of
risk capital or an adjustment of the threshold might be proxies for controlling the risk aversion of
market participants who face counterparty risk.
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