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Abstract

We evaluate a utility indifference price with an exponential utility function,

which we call a risk-sensitive value measure, under a normal mixture distribution

with time-varying volatility. We compare the risk-sensitive value measure and

mean-variance approach and provide an empirical application.
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1 Introduction

How to evaluate uncertain projects, future cash flows, random returns, etc. is fundamen-

tal in finance. Recently Miyahara (2010) proposed utility indifference pricing with an

exponential utility function to deal with this important problem and proved this utility

indifference pricing satisfies several desirable properties an evaluation function of ran-

dom variables such as uncertain projects ought to satisfy. Furthermore, it was shown

(see Theorem 3.2.8 of Rolski et al. (1999) for its proof) that the exponential utility

function u(x) = 1
α(1− e−αx) and the utility indifference price with the exponential util-

ity function is the only utility function and the only utility indifference price among

C2-class of utility functions under a certain condition. Therefore, the utility indifference

price with the exponential utility function is the only possible candidate for the suitable

value measure. Miyahara (2010) called the utility indifference price with the exponential

utility function a risk-sensitive value measure (RSVM) because it gives values sensitively

to the underlying risk of random variables such as uncertain projects, future cash flows,

random returns, etc. In other words, the RSVM of a random variable becomes positive

if it is attractive or profitable and negative otherwise.

Hodoshima et al. (2018) made a comparison of the RSVM and mean-variance (MV)

approach under a normal mixture distribution to present numerical examples and an

empirical example concerning the RSVM and MV approach. They showed the RSVM

is more sensitive to the underlying risk of a financial asset in question than the MV

approach. Normal mixture distributions are a practical and flexible class of distributions

which can capture symmetric distributions as well as skewed, leptokurtic, and multi-

modal distributions often observed in financial instruments (cf., e.g., Everitt and Hand

(1981), Titterington et al. (1985), McLachlan and Peel (2000), Kon (1984), Ritchey

(1990), Chin et al. (1999), Brigo and Mercurio (2001), and Alexander (2004)). It is also

true that any continuous distribution can be approximated by a finite discrete normal

mixture distribution. On the other hand, it is a stylized fact that the volatility of asset

returns is time varying and clustered over time. A normal mixture distribution is appar-

ently a time-independent model which assumes that observations are independent over

time. Therefore, a normal mixture distribution is not suitable to capture the feature of
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volatility clustering. In this paper, we extend the result of Hodoshima et al. (2018), i.e.,

compare the RSVM and MV-approach, when the underlying distribution of a financial

asset is given by a discrete normal mixture distribution with time-varying volatility. By

combining a discrete normal mixture distribution and time-varying volatility, we make

the underlying distribution of a financial asset more realistic. We assume conditional

variance to follow the generalized autoregressive conditional heteroskedastic (GARCH)

model proposed by Bollerslev (1986), which is a generalized model of the autoregressive

conditional heteroskedastic (ARCH) model proposed by a seminal paper Engle (1982).

There are several ways to incorporate the GARCH model into a discrete normal mix-

ture distribution. In this paper, we adopt the specification of a discrete normal mixture

distribution with the GARCH conditional variance proposed by Haas et al. (2004) and

Alexander and Lazar (2006), which allows for interdependence between variance com-

ponents in each component of a discrete normal mixture distribution. To estimate this

model, we employ an empirical characteristic function approach whose inference is based

on the characteristic function of an underlying random variable, which can deal with the

issue of estimability of a discrete normal mixture distribution by the maximum likelihood

estimation. Namely we employ the continuous empirical characteristic function (CECF)

method of Xu and Wirjanto (2010) and Xu and Knight (2011) (see also Knight and Yu

(2002)) which minimizes the distance between a theoretical characteristic function and

an empirical characteristic function with a continuous weighting function. In particular,

we apply the CECF method of Xu and Wirjanto (2010), which provides a practical means

to estimate the discrete normal mixture distribution with the GARCH volatility. Then

we derive the RSVM and MV approach based on the estimate of the discrete normal

mixture distribution with the GARCH volatility. We present a comparison of the RSVM

and MV approach over time when the underlying distribution of a financial asset is given

by the discrete normal mixture distribution with the GARCH(1,1) volatility.

We organize the paper as follows. Section 2 presents formulas of the RSVM and MV

approach when the underlying distribution of a financial asset is given by the discrete

normal mixture distribution with the GARCH(1,1) volatility. Section 3 presents an

empirical example of the RSVM and MV approach using daily return data of the Dow
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Jones Industrial Average (DJIA). Section 4 provides concluding comments.

2 The RSVM and MV approach under a discrete
normal mixture distribution with the GARCH volatil-
ity

In this section we present the RSVM and MV approach under a discrete normal mixture

distribution with the GARCH volatility.

We follow Xu and Wirjanto (2010) to assume the daily return X t of an asset is given

by

X t = εt (1)

where εt follows a mixture of K normal distributions with the time-varying volatility

process

εt|It−1 ∼ πkN(µk, σ
2
k,t) (2)

for t = 1, · · · , T and k = 1, · · · , K, where It−1 is the information set up to time t − 1,

0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1. The conditional variance of the k-th component is assumed

to be given by a GARCH(m,n) process

σ2
k,t = λk +

n∑

i=1

αkiε
2
t−i +

m∑

j=1

βkjσ
2
k,t−j (3)

where the component conditional variances depend on previous innovations εt−i for

i = 1, · · · , n as well as their own previous conditional variances. We follow Xu and

Wirjanto (2010) and Haas et al. (2004) to make the component conditional variances

not dependent on the previous conditional variances of other components. Then the

conditional mean, variance, skewness, and kurtosis of Xt given the information set up to
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time t− 1 are given respectively by

µ =
K∑

k=1

πkµk

σ2
t =

K∑

k=1

πk(σ
2
k,t + µ2

k)− µ2

τt =
1

σ3
t

K∑

k=1

πk(µk − µ)
[
3σ2

k,t + (µk − µ)2
]

(4)

κt =
1

σ4
t

K∑

k=1

πk

[
3σ4

k,t + 6(µk − µ)2σ2
k,t + (µk − µ)4

]
.

The RSVM of X t is given by

− 1

α
lnE[e−αX t ] (5)

where α denotes the degree of risk aversion in the exponential utility function u(x) =

1
α(1− e−αx) (see Miyahara (2010)). When X t has a mixture of K normal distributions

with the GARCH(m,n) volatility given above, then the RSVM is given by

− 1

α
ln[

K∑

k=1

πk exp(−µkα + σ2
k,tα

2/2)] (6)

where σ2
k,t is given by equation (3) (cf. equation (6) of Hodoshima et al. (2018)). On

the other hand, the MV of X t is given by

E[X t]−
1

2
αV [X t].

When the underlying distribution of X t has a mixture of K normal distributions with

the GARCH(m,n) volatility, then the MV of X t is given by

MV (α) =
K∑

i=1

πkµk −
1

2
α

{
K∑

k=1

πk(σ
2
k,t + µ2

k)− (
K∑

k=1

πkµk)
2

}
(7)

where σ2
k,t is given by equation (3) (cf. equation (7) of Hodoshima et al. (2018)).

3 An empirical example of the DJIA

In this section, we present an empirical example of the RSVM and MV for the DJIA.

We use the daily return data of the DJIA from January 2, 2008 until April 28, 2017.
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We employ the CECF method of Xu and Wirjanto (2010) to estimate the underlying

process. We present the estimate of the discrete normal mixture distribution with the

GARCH volatility. In this empirical example, we only estimate, as the volatility process,

the GARCH(1,1) volatility model which has been the most popular specification in many

previous empirical studies.

We provide summary statistics of the daily return data of the DJIA at Table 1. It is

a positively skewed distribution with heavy-tailed kurtosis.

We assume the daily return Xt follows the model given by equations (1), (2), and

(3). Our model incorporates the GARCH process into a K-component normal mixture

model. Hence it can capture two stylized facts of financial return data, i.e., distributional

properties of skewness and high kurtosis as well as volatility clustering.

To estimate our model we use an empirical characteristic function approach. It is well

known that the likelihood-based method has problems of estimation concerning normal

mixture distributions. In other words, the likelihood function is not always bounded over

its parameter space in normal mixture distributions (see, e.g., Quandt (1988), Quandt

and Ramsey (1978), and Schmidt (1982)). An alternative estimation method is an empir-

ical characteristic function approach that has important advantages over the likelihood-

based method, i.e., the characteristic function is always uniformly bounded over the

model’s parameter space. Tran (1994) starts a discrete empirical function approach by

matching a theoretical characteristic function with its empirical counterpart, i.e., by

minimizing the distance between the theoretical characteristic function and the empiri-

cal characteristic function over a discrete fixed-grid-point set, in normal mixture models.

Xu and Knight (2011) uses a CECF approach in normal mixture models which matches

the theoretical characteristic function with its empirical counterpart continuously with a

continuous weighting function. Xu and Wirjanto (2010) applies the CECF approach to

normal mixture models with the GARCH volatility process. We employ the method of

Xu and Wirjanto (2010) to compute the RSVM and MV approach in the normal mixture

model with the GARCH(1,1) volatility process.

We present a two-components normal mixture model with the GARCH(1,1) volatility
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process1. The estimation result of a two-components normal mixture model with the

GARCH(1,1) process is given at Table 22. The first component is a dominant state with

positive mean while the second component is a negative shock with large negative mean.

αk1(k = 1, 2), a response to the shock in the previous period, has a larger estimate in

the negative shock state than in the dominant state. On the other hand, βk1(k = 1, 2),

a response to the previous conditional variance, is similar in the two states. Parameters

are insignificant except for α11 and β11.

To show how the conditional variance in each component evolves over the entire sam-

ple, we provide graphs of the conditional variance against time at Figures 1-2 respectively

for the conditional variance of the first and second component. We calculate the condi-

tional variance using the parameter estimate from equation (3)3. We can see volatility

clustering in the two components. Over the entire sample, the conditional variance of

the second component fluctuates more strongly than that of the first component. This

is reasonable because the second component represents a negative shock, whereas the

first component represents a dominant state of ordinary variation. In the period of the

financial crisis of 2008-2009, the conditional variance of the two components becomes

large, and the conditional variance of the second component is even larger than that of

the first component. These correspond to the fact that, in the period of the financial

crisis of 2008-2009, the volatility of the stock market was soaring and the negative shock

to the market was tremendous.

Based on the estimate of the model, we then compute the RSVM and MV approach in

the DJIA. First we present graphs of the two measures over the entire sample for selective

degree of risk aversion α = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5. Figures 3-8 show those graphs

respectively for α = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5. There is almost no difference between the

two measures when the degree of risk aversion, i.e., α, is 0.01. As the degree of risk

1We have also estimated a three-components normal mixture model with the GARCH(1,1) volatility.
However we find the estimation result is the one where probability of the third component is very small
so that a three-components normal mixture model with the GARCH(1,1) process is virtually the same
as a two-components normal mixture model with the GARCH(1,1) process. Thus we only provide a
two-components normal mixture model with the GARCH(1,1) process.

2To estimate the GARCH process, we set an initial value of both square of the error term and
conditional variance equal to unconditional variance of the return observations.

3We derive the conditional variance from equation (3) with both the initial value of square of the
error term and conditional variance equal to the unconditional variance of the return observations.
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aversion increases, we can see some differences of the two measures particularly when

the stock market underperformed, notably in the financial crisis of 2008-2009. The

RSVM decreases more than the MV in the period of the financial crisis when the degree

of risk aversion is large. This indicates that the RSVM responds more sensitively to the

underlying risk of the stock market than the MV. Although Hodoshima et al. (2018)

acknowledged a risk-sensitive property of the RSVM compared to the MV approach in

the DJIA, they only reported the two measures once which correspond to the whole

sample using the normal mixture distribution with no volatility process. Thus evolution

of the RSVM and MV approach over time is a new feature not observed in previous

studies.

In order to see the difference of the two measures more clearly, we provide graphs

of the two measures for α = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5 in the financial crisis period from

September 2, 2008 till December 31, 2008. Figures 9-14 are those graphs respectively for

α = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5. We can see more clearly the difference of the two measures

as the degree of risk aversion increases.

Figures 3-14 suggest the two measures of the RSVM and MV take similar values

unless the market underperforms significantly and the degree of risk aversion is large.

The RSVM becomes smaller than the MV when the above two conditions occur at the

same time. We attribute this phenomenon to the underlying volatility of the market

being high since we let mean of each component in the model remain constant but

allow volatility of each component to vary in each observation. When the degree of risk

aversion is small, the effect of volatility on the RSVM becomes small as we can see from

equation (6) in Section 2. Only when the degree of risk aversion is large, the effect of

volatility on the RSVM materializes. In our example of the DJIA, this happens even

when the probability of the negative shock state, i.e., the second component, is as small

as 0.0474. We expect the effect of volatility on the RSVM increases as the probability of

the negative shock state becomes higher. In that case, the difference of the two measures

appear even when the degree of risk aversion is small, i.e., when underlying investors are

willing to take more risk.
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4 Concluding Comments

We have presented a comparison of the RSVM and MV approach when the underlying

distribution of uncertain projects, future cash flows, random returns, etc. is given by a

normal mixture distribution with the time varying GARCH volatility process. With this

underlying distribution we can capture both distributional properties of skewness and

heavy-tail kurtosis and volatility clustering which are stylized facts in data of financial

products.

We have provided the formulas of the RSVM and MV approach when the underlying

distribution of an asset return is a normal mixture distribution with the time varying

GARCH volatility process. Our comparison of the RSVM and MV approach using an

empirical example of the DJIA shows that the RSVM decreases more than the MV ap-

proach when the market performs quite poorly as in the financial crisis of 2008-2009 if

the degree of risk aversion is large. Thus the RSVM is more sensitive to the underlying

risk of the financial target in question than the MV approach. This is a further con-

firmation of the risk-sensitive property of the RSVM already seen in Miyahara (2010)

and Hodoshima et al. (2018) in the case of a normal mixture distribution with the time

varying GARCH volatility process which can capture well stylized facts in financial data.

.
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Table 1: Summary Statistics of the Daily Return Data of the DJIA

name mean s.d. skewness kurtosis
DJIA 0.027 1.221 0.157 13.836

s.d. stands for standard deviation.

Table 2: Estimates of a Two-Component Normal Mixture Distribution with the
GARCH(1,1) parameter for the daily return data of the DJIA

µ1 µ2 λ1 α11 β11 λ2 α21 β21 π2

0.0583 -0.9845 0.0058 0.0880 0.8865 0.0000 0.3705 0.9056 0.0474
(0.0636) (45.5908) (0.1318) (0.0063) (0.0882) (1.3073) (11.2680) (2.1144) (0.3244)

Numbers shown inside brackets are asymptotoic standard errors.
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Figure 1: Figure of the Realization of the Conditional Variance Process of the First
Component over the Entire Sample
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Figure 2: Figure of the Realization of the Conditional Variance Process of the Second
Component over the Entire Sample
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Figure 3: Figure of the RSVM and MV approach over the enire sample for α = 0.01
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Figure 4: Figure of the RSVM and MV approach over the enire sample for α = 0.1
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Figure 5: Figure of the RSVM and MV approach over the enire sample for α = 0.2
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Figure 6: Figure of the RSVM and MV approach over the enire sample for α = 0.3
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Figure 7: Figure of the RSVM and MV approach over the enire sample for α = 0.4
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Figure 8: Figure of the RSVM and MV approach over the enire sample for α = 0.5
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Figure 9: Figure of the RSVM and MV approach in the financila crisis for α = 0.01
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Figure 10: Figure of the RSVM and MV approach in the financila crisis for α = 0.1
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Figure 11: Figure of the RSVM and MV approach in the financila crisis for α = 0.2
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Figure 12: Figure of the RSVM and MV approach in the financila crisis for α = 0.3
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Figure 13: Figure of the RSVM and MV approach in the financila crisis for α = 0.4
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Figure 14: Figure of the RSVM and MV approach in the financila crisis for α = 0.5
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