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Abstract

In this study, we propose a derivatives pricing model where both cash and a non-cash asset
are posted as collateral for a derivatives contract. We assume that the participant exchanges
the posted non-cash collateral for money through the repo market. Our pricing formula for
the collateralized claim is derived taking into account the investment of the received risk-free
collateral asset. The resulting pricing formula describes a multi-curve framework and depends
on the proportion of cash or non-cash collateral and the repo market haircut. We assume that
these parameters are arbitrarily determined by the market. We then carry out a sensitivity
analysis and describe how the proportion of the cash collateral and the haircut affect the
derivatives price in a constant as well as stochastic interest rate environment. We finally show
that the sensitivity analyses results depend on the funding cost.

JEL Classification: G10, G12, G13
Keywords: derivatives pricing, non-cash collateralization, funding costs

1 Introduction

In this study, we propose a derivatives pricing model where both cash and a non-cash asset are
posted as collateral for a derivatives contract. Derivatives contracts have applied collateralization
to mitigate counterparty risk. That is, if a participant faces a negative marked-to-market (MtM)
exposure of a d1erivatives contract, then she/he posts the collateral to her/his counterparty. This
collateralization is referred to as variation margin. In recent, it has been suggested that an initial
margin is applied so that the collateral collector can hedge the liquidity risk of the posted collaterals
if the participant defaults (BCBS 2015). We consider only the variation margin for convenience.

If one considers pricing the collateralized derivatives products, the pricing rule will be different
from the one using the risk-free rate as the discount rate. In fact, Xiao (2017) empirically demon-
strated that the swap rate quoted in the market reflects the counterparty risk as well as (cash)
collateralization. As regards the pricing formula, Johannes and Sundaresan (2007) show that the
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Dr. Dai Taguchi, and Dr. Kazuhiro Yasuda for their helpful comments.
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discount rate is the difference between the risk-free rate and the net benefit of receiving cash col-
lateral. When the net benefit is the difference between the risk-free rate and the collateral rate,
the claim payoff is discounted using the collateral rate. That is, a discount factor is assigned to the
collateral rate to remain in the single-curve setting. This perspective has been supported by Fujii
et al. (2010), Piterbarg (2010), and Kan and Pedersen (2012), because the collateral rate is defined
as a return to the posted cash collateral especially under a credit support annex (CSA) agreement
(see also Fujii and Takahashi 2013, and Gregory 2015). From Fujii et al. (2011), the overnight
(ON) rate is used as a collateral rate and its term structure is estimated using Overnight Index
Swap (OIS) rate, that is, OIS discounting (Smith 2013).

The collateral rate is used for discounting because cash collateralization uses a single currency.
However, most of the clearing houses or security exchanges provide market participants an op-
portunity to use both cash and non-cash assets as collateral, allowing denomination in multiple
currencies. For example, ICE Clear Europe accepts government bonds of various countries (e.g.,
EU, Japan, the US) issued in different currencies as collateral1.

1.1 Literature Review

The derivative pricing formula includes multiple interest rates (referred to as multi-curve) when
one considers the denominations of the different cash or non-cash collateralization in the derivatives
pricing model. Fujii et al. (2010, 2011) and Fujii and Takahashi (2013, 2016) proposed derivatives
pricing models with cash collaterals denominated in different currencies, and showed that the claim
price is discounted with the collateral rate of not only the local currency, but also the different
other currencies. Note that the pricing formula of a claim is derived considering the investment of
the posted collateral (i.e., the pricing model by the asset side) in Fujii et al. (2010) and Fujii and
Takahashi (2016).

More generally, the derivative pricing model leads to a multi-curve setting by considering funding
even without a CSA agreement between the parties. Lou (2015a, b) considered a financial market
model without the CSA agreement where a participant with negative exposure posts a cash collateral
and earns her/his debt interest rate, to show that the fair value of a swap contract is discounted with
the liability-side funding rate. Studying more general situations, Crépey (2015a, b) considered a
model where the participants in a derivatives contract source money at the funding costs for hedging
or collateralization, to provide a multi-curve framework. Crépey’s models can accommodate the
borrowing rate, repo rate, and funding rates in different currencies.

The discount factor also depends on some parameters besides multiple interest rates, given that
one considers the non-cash collateralization. Constructing a replication strategy for collateralized
derivatives, Lou (2017) suggested a pricing method when cash and non-cash assets are posted as
collateral, and showed that the discount factor includes the funding rates of participants, a repo
rate, and the levels of haircuts besides the risk-free rate. Lou (2017) also carried out sensitivity
analyses, and described the effects of collateralization on the valuation adjustments (xVAs). Lou
(2017) has two types of haircut, one applied when the participant receives non-cash collateral, the
other applied in the repo market. Takino (2018) proposed an equilibrium pricing model for an
OTC option when a non-cash asset is posted as collateral, and modeled collateralization from the
perspective of the liability side, following Lou (2015a, b). Brigo et al. (2017) proposed an option
pricing model with counterparty risk (i.e., the so-called vulnerable option without collateralization)
when the participant sources assets for derivatives hedging from the repo market. The pricing
formula given by Brigo et al. (2017) also corresponds to the multi-curve framework; that is, the

1https://www.theice.com/clear-europe/treasury-and-banking
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discount factor includes the funding rate and repo rate. Note that Brigo et al. (2017) and Lou
(2017) assumed that all interest rates are constant. Our model is closely related to the Lou’s
(2017) model. We consider a model with a non-cash asset as collateral and derive a claim pricing
formula based on the asset side; we then extend it to a stochastic interest rate environment. We
also assume that the collateral payer arbitrarily chooses the proportion of the cash (or non-cash)
collateral amount for posting as collateral. In this sense, our model is closely related to Brigo et
al.’s (2017) model while the proportion of the cash collateral in Lou (2017) is determined by the
haircut for non-cash collateralization. In fact, we carry out a sensitivity analysis of the derivatives
prices related to the parameters determined by the participant arbitrarily following Brigo et al.
(2017).

1.2 This Study

In this study, we assume that both cash and non-cash assets are used as collateral, and that
the collaterals are continuously and perfectly posted in a single currency. We also assume that the
collateral receiver sources money by posting the received non-cash collateral asset to the repo market
and invests the funded money in a risk-free asset. That is, we consider an asset side pricing, as
demonstrated in previous studies (e.g., Fujii and Takahashi 2016), and derive a pricing formula for
the collateralized claim from the time-varying invested collateral value. The corresponding products
are the collateralized interest rate swap and collateralized option contracts. As regards the swap
contract, we derive the swap rate pricing formula after providing the price of the collateralized
bond. The discount factor in our formula includes of the difference between the risk-free rate and
the net return from investment of the collateral as described above. Since the non-cash asset posted
as part of the collateral is exchanged for cash through the repo market, our discount factor includes
the collateral rate and repo rate besides the risk-free rate and repo market haircut. It also depends
on the proportion of the cash collateral to the total collateral (we call this “cash collateral ratio”).
When the collateral is fully posted in cash, the discount factor of our formula coincides with the
collateral rate, as shown in previous studies.

We carry out sensitivity analyses, to find the effects of non-cash collateralization on the deriva-
tives pricing based on a pricing formula. Recall that our pricing formula includes the cash collateral
ratio and haircut as parameters. These parameters are assumed to be arbitrarily determined by
the market participants or clearing houses. Brigo et al. (2017) carried out a sensitivity analysis of
the option price with respect to the parameters that the market participant can determine arbi-
trarily. Hence, following Brigo et al. (2017), we demonstrate the effects of the cash collateral ratio
and haircut on derivatives pricing. We consider cases where all the interest rates are constant and
stochastically driven. We apply the Vasicek and CIR models to describe stochastically the drives
in interest rates. The Vasicek model is an example of negative interest rate models, while the CIR
model is an example of non-negative interest rate models.

Our findings are as follows. First, when all interest rates are constant, the cash collateral ratio
increases the claim price. The effect of a haircut in the repo market on the claim price differs by
the risk-free rate and repo rate. When the repo rate is larger (lower) than the risk-free rate, the
haircut increases (decreases) the claim price. These results are interpreted from the perspective
of funding cost. In this study, we assume that the collateral collector invests the posted collateral
by converting it to money. Thus, the collateral receiver incurs funding costs (i.e., at the collateral
and repo rates) and obtains returns from investment. Note that the collateral collector also pays
the claim fee (e.g., option price) at the date of contract in our model. Thus, the collateral receiver
accepts the higher claim price if she/he can relatively reduce the funding cost, and vise versa.
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Second, for the case of stochastically varying interest rates and option contract, we obtain the same
results as for the constant rate case. Also, we find no difference in results under the Vasicek and
CIR models in the stochastic interest rate environment. These results show that our pricing model
is robust. Finally, the sensitivity analysis results for the swap rate are quite the opposite to those
obtained for the option case. We can deduce this easily from the relation between the returns and
asset price as well as from the derivatives product characteristic.

The remainder of the study is organized as follows. In the next section, we set a financial market
model and derive a claim pricing formula. We also conduct a sensitivity analysis of the claim price
when all interest rates are constant. In Section 3, we carry out sensitivity analyses of the swap rate
and option price under stochastic interest rate environments. Section 4 concludes the study.

2 Model and Pricing

2.1 Collateral Agreement and Payoff with Collateralization

We first set a collateral agreement to derive the pricing formula of derivatives with collateralization.
The collateral is continuously and perfectly posted. “Perfectly” posted collaterals means that
the collateral amount is equal to the derivatives’ MtM value. Furthermore, continuously posting
collaterals eliminates the counterparty risk. The collateral assets can include non-cash assets as
well as cash. For cash collateral, the collateral receiver pays the collateral rate rc. If the cash
proportion of the total collateral amount (we call this the cash collateral ratio) is η (0 ≤ η ≤ 1)
and the MtM value is Vt at time t, then the time-varying payout to the collateral payer is

rctηVtdt.

The time t value of the posted non-cash collateral automatically becomes

(1− η)Vt.

However, as regards the non-cash collateral, the collateral receiver should pay the collateral payer
the returns gained from the non-cash asset posted as collateral. For example, if Dealer A receives
a coupon-bearing bond from Bank B, A should pay B the coupon obtained from holding the bond.
We, however, assume that a zero-coupon bond is a non-cash collateral. Thus, we effectively assume
that the non-cash collateral earns nothing at all. Instead of the posted non-cash collateral having
no payment, non-cash collateralization should have no haircut.

Next, we introduce the behavior of the participant who receives the collateral assets. The
participant invests the cash collateral in a risk-free asset at the risk-free rate r. A posted non-cash
collateral is used to source money from the repo market, and this funded money also is invested
in the risk-free asset. We assume that the repo market offers haircut h (0 ≤ h ≤ 1) to the
investors; that is, the participant can obtain money worth only (1− h)× 100% of the posted asset.
Moreover, the investor funding money through the repo pays an interest, that is, the repo rate rp.
Summarizing the behavior of the collateral collector, we represent the instantaneous change in the
received collateral value as

ytVtdt := {rt(η + (1− η)(1− h))− (rctη + rpt (1− η)(1− h))}Vtdt.

Following the approach of Fujii and Takahashi (2016), we derive a collateralized claim pricing
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rule. Under the risk-neutral measure Q, the collateralized claim price q(t) at time t is given by

q(t) =EQ
t

[
e−

∫ T
t rsdsq(T ) +

∫ T

t
e−

∫ s
t ruduysVsds

]

=EQ
t

[
e−

∫ T
t rsdsq(T ) +

∫ T

t
e−

∫ s
t ruduysq(s)ds

]
,

assuming that Vs = q(s) for t ≤ s ≤ T and full collateralization, where q(T ) is the claim payoff at
maturity T . If we set

Xt = e−
∫ t
0 rsdsq(t) +

∫ t

0
e−

∫ s
0 ruduysq(s)ds, (2.1)

then

EQ
t [XT ] =EQ

t

[
e−

∫ T
0 rsdsq(T ) +

∫ T

0
e−

∫ s
0 ruduysq(s)ds

]

=e−
∫ t
0 rsdsEQ

t

[
e−

∫ T
t rsdsq(T ) +

∫ T

t
e−

∫ s
t ruduysq(s)ds

]
+

∫ t

0
e−

∫ s
0 ruduysq(s)ds

=e−
∫ t
0 rsdsq(t) +

∫ t

0
e−

∫ s
0 ruduysq(s)ds

=Xt.

Thus, Xt is a Q-martingale. From (2.1), we have

dXt = −rte
−

∫ t
0 rsdsq(t)dt+ e−

∫ t
0 rsdsdq(t) + e−

∫ t
0 ruduytq(t)dt,

which yields

dq(t) = (rt − yt)q(t)dt+ e
∫ t
0 rsdsdXt. (2.2)

We rewrite (2.2) as

−dq(t) = −(rt − yt)q(t)dt− e
∫ t
0 rsdsdXt. (2.3)

From Proposition 6.2.1 in Pham (2009), the solution of the backward stochastic differential equation
(2.3) is given by

βtq(t) = EQ
t [βT q(T )], (2.4)

where βt = exp
(
−
∫ t
0 (rs − ys)ds

)
. Equation (2.4) leads to the pricing formula of the collateralized

claim q(T ) as follows:

Proposition 2.1. If r is a risk-free rate, rc is the collateral rate, rp is the repo rate, and h is the
haircut of the repo, then the price of a (continuously and perfectly) collateralized contingent claim
under the risk-neutral is given by

q(t) = EQ
t

[
e−

∫ T
t (rs−ys)dsq(T )

]
, (2.5)

where
ys = rs(η + (1− η)(1− h))− (rcsη + rps(1− η)(1− h)). (2.6)
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Johannes and Sundaresan (2007) called y in (2.6) as the “net benefit”, and derived the formula
(2.5). We differ with Johannes and Sundaresan (2007) in that our net benefit consists of the repo
rate rp, cash collateral ratio η, and haircut h.

Remark 2.1. If the collateral is fully posted by cash, that is, h = 1, then (2.6) is

ys = rs − rcs.

Thus, the pricing formula (2.5) is given by

q(t) = EQ
t

[
e−

∫ T
t rcsdsq(T )

]
.

This agrees with the result in Fujii et al. (2010), for instance.

2.2 Constant Rates Case and Sensitivity Analysis

We consider the case where all the rates are positive and constant during the life of the derivatives
contracts; that is, rt ≡ r (> 0), rct ≡ rc (> 0), and rpt ≡ rp (> 0) for 0 ≤ t ≤ T . This analysis
provides an intuition on how the collateral agreement affects the claim price. The pricing formula
(2.5) of the claim with maturity T under the constant interest rates is

q(t) = e−(r−y)(T−t)EQ
t [q(T )] , (2.7)

where y = r(η + (1− η)(1− h))− (rcη + rp(1− η)(1− h)).
Assuming that all the interest rates are constant, we carry out the sensitivity analysis of the

claim price pertaining to the cash collateral ratio η and haircut h. We assume that q(t) > 0 for
0 ≤ t ≤ T , which is valid for at least the option cases. We further assume that the payoff function
q(T ) does not depend on η and h at all. We first observe the effect of cash collateral ratio η on the
derivatives price. A partial derivative with respect to η is

∂q(t)

∂η
= {rp − (rp − r)h− rc}(T − t)q(t).

The sign of the partial derivative depends on several parameters. Because h < 1, we approximately
set (rp − r)h = 0. Then, we have

∂q(t)

∂η
≈ (rp − rc)(T − t)q(t).

Therefore, an increase in the cash collateral ratio η increases the derivatives price when rp > rc and
decreases it when rp < rc. Here, since the ON rate is applied as the collateral rate in practice (Fujii
and Takahashi 2016), we expect rp > rc. Thus, the cash collateral ratio increases the derivatives
price.

This result is interpreted as follows: First, the participant evaluating the derivatives pays the
derivatives fee to the counterparty and receives collateral from her/him. In this study, the collateral
receiver should obtain funds through the repo market at the repo rate for the received non-cash
collateral. This means that a derivatives contract with collateralization is costly for the collateral
receiver or participant with a positive exposure at the MtM date. Thus, the participant with a
positive exposure might be willing to pay less derivatives fee if the cost of funding the received
collateral is high. From this perspective, we can interpret the effects of the cash collateral ratio η
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on the derivatives price. An increase in cash collateral ratio reduces the amount funded through
the repo market. Now, since the relation of the funding costs is given by

Repo rate rp > Collateral rate rc,

the participant can obtain a cash collateral with low funding cost. In other words,　 by spending
the money funded from the posted collateral on the derivatives contract, the participant can enter
the derivatives contract with a low funding cost. Hence, the participant with a positive exposure
at the time of contract accepts a higher price.

Next, we consider the effect of a haircut in the repo market on the derivatives price. A partial
derivative with respect to h is

∂q(t)

∂h
= (rp − r)(1− η)(T − t)q(t).

Thus, for a given η (0 ≤ η ≤ 1), an increase in haircut h increases the derivatives price if rp > r
and decreases it if rp < r. The result is interpreted as follows: The increase in haircut reduces the
amount funded through repo. This effectively reduces the cost of funding (i.e., the repo rate × the
borrowed money amount via repo), and the collateral receiver (i.e., the participant with positive
exposure) might accept the higher claim price. However, when r > rp, the participant obtains a
higher return from investing the money funded through collateralization. This is thus supposed to
decrease the claim price from the relation between the return from and price of the assets. However,
when r < rp, that is, when the collateral receiver cannot earn relatively more money since the repo
cost is larger than the return, the effective reduction in funding cost from the increase in haircut
increases the derivatives price.

Note that these sensitivity analyses consider the derivatives products where prices are presented
in (2.5) like an option. We use numerical simulation for the sensitivity analysis of a swap rate
because the swap rate does not (2.5).

3 Numerical Results

We consider the risk-neutral probability space (Ω,F , {Ft}t≥0, Q), where {Ft}t≥0 is a filtration
generated by a four-dimensional standard Brownian motion, W = (W1, . . . ,W4). We also consider
a collateralized interest rate swap for forward LIBOR and a collateralized option written on general
asset S as examples of derivatives.

3.1 Collateralized Zero-coupon Bond

We first consider the price of a collateralized zero-coupon bond to derive the swap rate. We denote
the price of the collateralized zero-coupon bond at time t as P c(t, T ); that is,

P c(t, T ) = EQ
t

[
e−

∫ T
t (rs−ys)ds

]
.

3.2 Collateralized Interest Rate Swap

We consider a collateralized swap contract for a three-month LIBOR, where the terminal is one
year, for example. The term “collateralized” in the swap contract implies that the future swap
values are discounted with the difference between the risk-free rate and net benefit. Technically,
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the LIBOR rate is solved with the collateralized zero-coupon bond. The settlement of the swap
contract is executed every three months, with the contract expiring at one year later. We denote
the three-month LIBOR rate for [Tj−1, Tj ] at time t < Tj−1 as L(t;Tj−1, Tj), and the pay/receive
date as {T1, . . . , T4}, where T4 is the expire date. We also denote the collateralized swap rate by
Rc; now, from (2.5), the the present value V0 of the swap contract is

V0 =
4∑

j=1

EQ

[
e−

∫ Tj
0 (rs−ys)dsδj(R

c − L(Tj−1;Tj−1, Tj))

]
, (3.1)

where δj = Tj − Tj−1 and δj = 0.25 for all j. From (3.1), we have

V0 =
4∑

j=1

EQ

[
e−

∫ Tj
0 (rs−ys)dsδj(R

c − L(Tj−1;Tj−1, Tj))

]

=
4∑

j=1

{
EQ

[
e−

∫ Tj
0 (rs−ys)ds

]
δjR

c − EQ

[
e−

∫ Tj
0 (rs−ys)dsδjL(Tj−1;Tj−1, Tj)

]}

=
4∑

j=1

{
P c(0, Tj)δjR

c − P c(0, Tj)δjE
Tj [L(Tj−1;Tj−1, Tj)]

}

=
4∑

j=1

{P c(0, Tj)δjR
c − P c(0, Tj)δjL(0;Tj−1, Tj)}

=
4∑

j=1

{
P c(0, Tj)δjR

c − P c(0, Tj)

(
P c(0, Tj−1)

P c(0, Tj)
− 1

)}

=
4∑

j=1

{P c(0, Tj)δjR
c − (P c(0, Tj−1)− P c(0, Tj))} ,

(3.2)

where ETj is the expectation under the Tj-forward measure. The collateralized LIBOR rate is given

by L(t;Tj−1, Tj) =
1
δj

(
P c(t,Tj−1)
P c(t,Tj)

− 1
)
for t < Tj−1; we apply this from the forth line to the fifth

line in (3.2).
Since the swap rate equals the swap value zero in (3.2), that is, V0 = 0, the swap rate is given

by

Rc =
P c(0, T0)− P c(0, T4)∑4

j=1 δjP
c(0, Tj)

. (3.3)

We set T0 = 0.25, T1 = 0.50, T2 = 0.75, T3 = 1.00, and T4 = 1.25 in the following numerical
implementations.

3.3 Collateralized Option

We also consider an option contract written on the general asset price S in (3.5). For example, we
consider a plain vanilla call with maturity T ; that is, the payoff function is q(T ) = max(ST −K, 0).
From (2.5), the collateralized option price q(0) is given by

q(0) = EQ
[
e−

∫ T
0 (rs−ys)dsq(T )

]
. (3.4)
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Figure 1: Collateralized swap rate under the Vasicek model (3.5) when r0 > rp0 .

We assume that the dynamics of S is driven by

dSt = St(rtdt+ σSdW4t), S0 = S.

We set S0 = 22865, σS = 0.20, K = 22750, and T = 0.25 through the paper.

3.4 Vasicek-type Case

Under the Q-measure, we set the risk-free rate, collateral rate, and repo rate as follows:

drt = κ(r̄ − rt)dt+ bdW1t, r0 = r,
drct = κc(r̄c − rct )dt+ bcdW2t, rc0 = rc,
drpt = κp(r̄p − rpt )dt+ bpdW3t, rp0 = rp,

(3.5)

respectively, where all κ·, r̄·, and b· are constant. Model (3.5) gives the bond price P c(t, ·) (auto-
matically, the swap rate Rc) and the option price q(0) by a closed formula (see Appendix A, B).
The fundamental parameters are κ = κc = κp = 1.0, b = 0.03, bc = 0.01, bp = 0.03, and r̄c = 0.015.

3.4.1 Collateralized Interest Rate Swap

Figures 1 and 2 plot the results of swap rate Rc in (3.3). These figures correspond to the cases
of r0 > rp0 (r0 = r̄ = 0.025, rc0 = r̄c = 0.015, rp0 = r̄p = 0.02) and rp0 > r0 (r0 = r̄ = 0.02,
rc0 = r̄c = 0.015, rp0 = r̄p = 0.03), respectively. From Figure 1, the haircut increases and the cash
collateral ratio decreases the swap rate when r0 > rp0 . In contrast, Figure 2 demonstrates that the
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Figure 2: Collateralized swap rate under the Vasicek model (3.5) when rp0 > r0.

haircut as well as the cash collateral ratio decreases the swap rate when r0 < rp0 . These results
contradict those obtained for the asset price in Section 2.2, but are straightforward from the relation
between the return from and price of the asset when one regards the swap rate as a return.

3.4.2 Collateralized Option

Figures 3 and 4 plot the option price q(0) in (3.4). These figures correspond to the cases of r0 > rp0
(r0 = r̄ = 0.025, rc0 = r̄c = 0.015, rp0 = r̄p = 0.02) and rp0 > r0 (r0 = r̄ = 0.02, rc0 = r̄c = 0.015,
rp0 = r̄p = 0.03), respectively. From Figure 3, the haircut decreases price and the cash collateral
ratio increases the option price when r0 > rp0 . In contrast, Figure 4 shows that the haircut increases
the swap rate while the cash collateral ratio increases the option price when r0 < rp0 . These results
agree with those under the constant rates case examined in Section 2.2.

3.5 Cox-Ingersoll-Ross (CIR)-type Case

Under the Q-measure, we set the risk-free rate, collateral rate, and repo rate as

drt = κ(r̄ − rt)dt+ σ
√
rtdW1t, r0 = r,

drct = κc(r̄c − rct )dt+ σc
√
rctdW2t, rc0 = rc,

drpt = κp(r̄p − rpt )dt+ σp

√
rpt dW3t, rp0 = rp,

(3.6)

respectively, where κ·, r̄·, and σ· are constant.
In this case, we implement the pricing rules for the swap rate and option using Monte-Carlo

simulation. We apply the so-called implicit Eular-Maruyama Scheme in discretization proposed

10



1042

1042.5

1043

1043.5

1044

0 1

0.05 0.8

0.1 0.6

Haircut h 0.15 Cash Collateral Ratio η0.4

0.20.2

0.25 0

Figure 3: Collateralized option price under the Vasicek model (3.5) when r0 > rp.
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Figure 4: Collateralized option price under the Vasicek model (3.5) when rp > r0.
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Parameter r0 > rp0 case r0 < rp0 case

r0 0.025 0.025
κ 1.500 1.500
r̄ 0.025 0.025
σ 0.130 0.125
rc0 0.015 0.015
κc 1.000 1.000
r̄c 0.015 0.015
σc 0.100 0.100
rp0 0.020 0.030
κp 1.500 1.500
r̄p 0.020 0.030
σp 0.125 0.150

Table 1: Parameters for the CIR type case.

by Alfonsi (2013) for processes r, rc, and rp (see Appendix C), and use the Milstein scheme (c.f.
Gatheral 2006) for process S. We divide one year into 1,000 grids and set the simulation times as
200,000.

In order to ensure a strong convergence of Ŷ with order 1 (Alfonsi 2013), we assume that

σ2
· < κ·r̄·, 1 <

4

3

κ·r̄·

σ2
·
. (3.7)

A parameter set in Table 1 satisfies the convergence condition (3.7).

3.5.1 Collateralized Interest Rate Swap

Figures 5 and 6 plot the results of swap rate Rc in (3.3). These figures correspond to the cases of
r0 > rp0 (rp0 = r̄p = 0.02, σp = 0.125) and rp0 > r0 (rp0 = r̄p = 0.03, σp = 0.15), respectively. From
Figure 5, the haircut increases and the cash collateral ratio decreases the swap rate. In contrast,
Figure 6 shows that the haircut as well as the cash collateral ratio decreases the swap rate. These
results agree with those obtained for the Vasicek-type case.

3.5.2 Collateralized Option

Figures 7 and 8 plot the results of option price q(0) in (3.4). These figures correspond to the cases
of r0 > rp0 (rp0 = r̄p = 0.02, σp = 0.125 in (3.6)) and rp0 > r0 (rp0 = r̄p = 0.03, σp = 0.15 in (3.6)),
respectively. From Figure 7, the haircut decreases and the cash collateral ratio increases the option
price. In contrast, Figure 8 shows that the haircut as well as the cash collateral ratio increases the
option price. These results agree with those obtained for the Vasicek-type case (automatically, the
constant rates case).

4 Summary

In this study, we proposed a derivatives pricing model with non-cash collateralization. Our model
allows for the participant to (re)invest the posted collaterals, and especially, to convert the posted
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Figure 5: Collateralized swap rate under the CIR model (3.6) when r0 > rp0 .
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non-cash collateral into money through the repo market. We also assumed that the participant
pricing the derivatives products is a collateral receiver or an investor with a positive exposure in
derivatives contracts. That is, we proposed an asset-side pricing model and derived a pricing rule
for the collateralized claim by considering the investment of the received collateral. The resulting
pricing formula describes a multi-curve framework and depends on the combination of a cash and
non-cash collateral and the haircut of the repo market. Then, we investigated how the proportion
of cash or non-cash collateral to the total posted collateral amount (we call this the cash collateral
ratio) and the haircut in the repo market respectively affect the collateralized swap rate and option
price. These parameters have different effects on the swap rate and option price. This result is
straightforward from the relation between the return and asset price. Changes in the cash collateral
ratio and haircut affects the derivatives prices. These results are interpreted from the funding cost
or net benefit perspective. In this study, the collateral collector evaluates the derivatives price at the
contract date. Hence, when a change in parameter imposes a higher funding cost on the collateral
receiver, she/he does not accept the higher derivatives price and vice versa. We also considered the
market environments where all the interest rates are constant and vary stochastically. The results
of sensitivity analyses are the same for both cases. This shows the robustness of our pricing model.
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A Closed Formula for Collateralized Zero-coupon Bond Price
(Section 3.2)

For the interest rate model (3.5), we derive a closed pricing formula for the collateralized zero-
coupon bond by following Tabata (2002).

We first set
rt − yt = F1rt + ηrct + F2r

p
t

for 0 ≤ t ≤ T , where

F1 =1− (η + F2),

F2 =(1− η)(1− h).

Then, we have

I(s, t) :=

∫ t

s
(ru − yu)du

=F1

∫ t

s
rudu+ η

∫ t

s
rcudu+ F2

∫ t

s
rpudu

=F1Ir(s, t) + ηIc(s, t) + F2Ip(s, t)

(A.1)

for s ≤ t, where

Ir(s, t) =(t− s)r̄ +
1

κ
(1− e−κ(t−s))(rs − r̄) +

b

κ

∫ t

s
(1− e−κ(t−u))dW1u,

Ic(s, t) =(t− s)r̄c +
1

κc
(1− e−κc(t−s))(rcs − r̄c) +

bc
κc

∫ t

s
(1− e−κc(t−u))dW2u,

Ip(s, t) =(t− s)r̄p +
1

κp
(1− e−κp(t−s))(rps − r̄p) +

bp
κp

∫ t

s
(1− e−κp(t−u))dW3u.

The time-t value of the collateralized zero-coupon bond with maturity T is given by

P c(t, T ) =EQ
t

[
e−

∫ T
t (rs−ys)ds

]

=EQ
t

[
e−I(t,T )

]
.

(A.2)

Since we use the Vasicek model, we deduce that I(s, t) follows by a normal distribution. Thus,
(A.2) is given by

P c(t, T ) = exp

(
−EQ

t [I(t, T )] +
1

2
V arQt [I(t, T )]

)
.

Finally, we provide the conditional expectation and variance of I as follows:

EQ
s [I(s, t)] = F1m(rs, t− s) + ηmc(r

c
s, t− s) + F2mp(r

p
s , t− s),

where

m(rs, τ) =τ r̄ +
1

κ
(1− e−κτ )(rs − r̄),

mc(r
c
s, τ) =τ r̄c +

1

κc
(1− e−κcτ )(rcs − r̄c),

mp(r
p
s , τ) =τ r̄p +

1

κp
(1− e−κpτ )(rps − r̄p);
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and
V arQs [I(s, t)] = (F1)

2v(t− s) + η2vc(t− s) + (F2)
2vp(t− s),

where

v(τ) =
b2

2κ3
(4e−κτ − e−2κτ + 2κτ − 3),

vc(τ) =
b2c
2κ3

c

(4e−κcτ − e−2κcτ + 2κcτ − 3),

vp(τ) =
b2p
2κ3

p

(4e−κpτ − e−2κpτ + 2κpτ − 3).

B Closed Formula for Collateralized Option Price (Section
3.3)

We derive a closed formula for (3.4) by following Kim (2002). We also use the same notations as
Kim (2002).

We set
ZT = e−

∫ T
0 (rt−yt)dt(ST −K).

Then, for the dynamics in (3.5), we have

ZT =e−
∫ T
0 (rt−yt)dt

(
S0e

∫ T
0 rtdt− 1

2σ
2
ST+σSW4T −K

)

=S0e
∫ T
0 ytdt− 1

2σ
2
ST+σSW4T − e−I(0,T )K,

where I(·, ·) is defined in (A.1). By defining

X1T =− (η + F2)
b

κ

∫ T

0
(1− e−κ(T−u))dW1u + η

bc
κc

∫ T

0
(1− e−κc(T−u))dW2u

+ F2
bp
κp

∫ T

0
(1− e−κp(T−u))dW3u + σSW4T ,

X2T =F1
b

κ

∫ T

0
(1− e−κ(T−u))dW1u + η

bc
κc

∫ T

0
(1− e−κc(T−u))dW2u

+ F2
bp
κp

∫ T

0
(1− e−κp(T−u))dW3u,

B1(T ) =(η + F2)m(r0, T )− ηmc(r
c
0, T )− F2mp(r

p
0 , T )

B2(T ) =F1m(r0, T ) + ηmc(r
c
0, T ) + F2mp(r

p
0 , T )

where F1, F2, m(·, ·), mc(·, ·), and mp(·, ·) are as defined in Appendix A. Now, ZT is rewritten as

ZT = S0e
− 1

2σ
2
ST+B1(T )+X1T −Ke−B2(T )−X2T .

We further set
ΣT

11 = (η + F2)
2v(T ) + η2vc(T ) + (F2)

2vp(T ) + σ2
ST,
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ΣT
12 = ΣT

21 = −(η + F2)F1v(T ) + η2vc(T ) + (F2)
2vp(T ),

Σ22 =(F1)
2 b

2

κ2

∫ T

0
(1− e−κ(T−u))2du+ η2

b2c
κ2
c

∫ T

0
(1− e−κc(T−u))2du+ (F2)

2 b
2
p

κ2
p

∫ T

0
(1− e−κp(T−u))2du

=(F1)
2v(T ) + η2vc(T ) + (F2)

2vp(T ),

where v(·), vc(·), and vp(·) are defined in Appendix A. Then, it holds that

ZT = S0e
− 1

2σ
2
ST+B1(T )+X1T −Ke−B2(T )−X2T ,

where
(

X1T

X2T

)
∼ N2

[(
0
0

)
,

(
ΣT

11 ΣT
12

ΣT
21 ΣT

22

)]
.

At this point, the inequality of ZT ≥ 0 is equivalent to

X1T +X2T ≥ C(T ),

where

C(T ) = − ln
S0

K
−B1(T )−B2(T ) +

1

2
σ2
ST.

Therefore, the price of collateralized option G is given by

V0 =EQ[max(ZT , 0)]

=EQ
[{

S0e
− 1

2σ
2
ST+B1(T )+X1T −Ke−B2(T )−X2T

}
1ZT≥0

]

=EQ
[
S0e

− 1
2σ

2
ST+B1(T )+X1T 1X1T+X2T≥C(T )

]
− EQ

[
Ke−B2(T )−X2T 1X1T+X2T≥C(T )

]

=:(I)− (II).

(B.1)

We solve terms (I) and (II) in (B.1) using the result in Kunitomo and Takahashi (1992) as applied
by Kim (2002).

(I) =S0e
− 1

2σ
2
ST+B1(T )EQ

[
eX1T 1X1T+X2T≥C(T )

]

=S0e
− 1

2σ
2
ST+B1(T )

∫ ∫

x1+x2≥C(T )
ex1φ2(x|µ,Σ)dx1dx2

=S0e
− 1

2σ
2
ST+B1(T )

∫ ∫

(1,1)x≥C(T )
e(1,0)xφ2(x|µ,Σ)dx

=S0e
− 1

2σ
2
ST+B1(T ) exp

(
(1, 0)µ+

1

2
(1, 0)Σ(1, 0)′

)
Φ

(
(1, 1)(µ+ Σ(1, 0)′)− C(T )√

(1, 1)′Σ(1, 1)

)

=S0e
− 1

2σ
2
ST+B1(T )e

1
2Σ

T
11Φ

(
ΣT

11 + ΣT
12 − C(T )√

ΣT
11 + 2ΣT

12 + ΣT
22

)

=S0e
B1(T )+ 1

2 (Σ
T
11−σ2

ST )Φ

(
ΣT

11 + ΣT
12 − C(T )√
D

)

=S0e
B1(T )+ 1

2 (Σ
T
11−σ2

ST )Φ(d1),
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where φ2(·|a, b) is the probability density function of the two-dimensional normal distribution with
mean vector a and covariance matrix b, Φ(·) is the cumulative distribution function of the standard
normal distribution with x = (x1, x2)′, µ = (0, 0)′,

Σ =

(
ΣT

11 ΣT
12

ΣT
21 ΣT

22

)
,

D = ΣT
11 + 2ΣT

12 + ΣT
22,

and

d1 =
ΣT

11 + ΣT
12 − C(T )√
D

.

From the forth line to the fifth line, we used Kunitomo and Takahashi (1992) (See Lemma 1 in Kim
2002).

(II) =Ke−B(T )EQ
[
e−X2T 1X1T+X2T≥C(T )

]

=Ke−B(T )

∫ ∫

(1,1)x≥C(T )
e(0,−1)xφ2(x|µ,Σ)dx

=Ke−B(T ) exp

(
(0,−1)µ+

1

2
(0,−1)Σ(0,−1)′

)
Φ

(
(1, 1)(µ+ Σ(0,−1)′)− C(T )√

(1, 1)′Σ(1, 1)

)

=Ke−B(T )e
1
2Σ

T
22Φ

(
−ΣT

12 − ΣT
22 − C(T )√
D

)

=Ke−B(T )+ 1
2Σ

T
22Φ(d2)

=KP c(0, T )Φ(d2),

where

d2 = d1 −
√
D =

−ΣT
12 − ΣT

22 − C(T )√
D

.

C Implicit Eular-Maruyama Scheme

Following Alfonsi (2013), we discretize the CIR-type processes (3.6) in Monte-Carlo simulation. If
Yt =

√
rt (Y0 =

√
r0), from Ito’s formula, Yt follows

dYt =

(
κr̄ − σ2/4

2Yt
− κ

2
Yt

)
dt+

σ

2
dW1t.

At this point, we consider the drift-implicit Euler-Maruyama approximation,

Ŷt = Ŷtk +

(
κr̄ − σ2/4

2Ŷt

− κ

2
Ŷt

)
(t− tk) +

σ

2
(W1t −W1tk) (C.1)

for t ∈ (tk, tk+1] with tk = kT
n (T > 0), and Ŷ0 =

√
r0. Then, (C.1) gives the unique solution

Ŷt =
Ŷtk + σ

2 (Wt −Wtk) +
√
M(tk, t)

2(1 + κ
2 (t− tk))

, (C.2)
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where M(tk, t) = (Ŷtk + σ
2 (Wt −Wtk))

2 + 2(1 + κ
2 (t− tk))(a− σ2

4 )(t− tk). From Alfonsi (2013), if
σ2 < κr̄ and 1 ≤ l < 4

3
κr̄
σ2 , there exists a positive constant Kl such that

(
E

[
max
t∈[0,T ]

|Ŷt − Yt|l
])1/l

≤ Kl
T

n
.
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