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Abstract

In this study, we consider Pareto efficiency in financial markets. In welfare economics, it is
sufficient to consider competitive equilibrium to assure Pareto efficiency. This study, however,
focuses on describing the utility possibility frontier, which explicitly shows Pareto efficiency for
financial markets. To this end, we use the time-additive utility (functional) with the mean-
variance utility. In deriving the utility possibility frontier, we obtain an asset pricing formula
dependent on an agent’s utility. We provide a characteristic of this formula to ensure Pareto
efficiency. Moreover, our study generalizes the payoff function of the asset. This enables us
to analyze various financial transactions. As an application of our framework, we consider a
simple insurance contract with default. We then show that the likelihood of default makes the
market Pareto inefficient or deteriorates social welfare, as shown in previous studies.

JEL Classification: G10, G12, G13
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1 Introduction

In this study, we consider Pareto efficiency in financial markets. Pareto efficiency is a criterion in
microeconomics, showing optimality in exchanges of goods, services, and financial assets. We say an
exchange is Pareto efficient if an agent cannot increase her/his welfare without decreasing the welfare
of others. Previous studies have demonstrated how the regulations in financial transactions and
financial instruments (including products) improve Pareto efficiency in the incomplete (financial)
markets (Acharya and Bisin 2014, Brennan and Cao 1996, Geanakoplos 1997, Lioui and Poncet
2005, and Taddei 2007). The default in financial transaction is the most typical example of the
incomplete market. For example, Geanakoplos (1997) shows that the introduction of collateral
improves Pareto efficiency in the market. Acharya and Bisin (2014) and Taddei (2007) also consider
collateralization in analyzing Pareto efficiency.

As highlighted in textbooks on microeconomics (c.f., Chapter 22 in Varian 1992), Pareto effi-
ciency is described using the so-called Utility Possibility Frontier (Figure 1). Figure 1 shows a sam-
ple of the utility possibility frontier between two agents. The curve in the figure is right-decreasing.
This implies that if one agent wants to increase its utility, the other has to decline. Hence, the
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Figure 1: Utility possibility frontier

points on the utility possibility frontier satisfy Pareto efficiency. Using the utility possibility frontier,
Geanakoplos (1997) demonstrates that a defaultable economy reduces Pareto efficiency. Therefore,
needless to say, the utility possibility frontier is useful and accessible for analyzing the welfare of
an economy.

While the Pareto criterion has been used in analyzing financial markets, few studies describe
the utility possibility frontier explicitly (we only introduced Geanakoplos 1997). However, as this
study reveals, it is necessary to pose some assumptions in the model to explicitly describe the utility
possibility frontier. In fact, Geanakoplos (1997) has never provided the function of the frontier. In
this study, we construct a model to explicitly describe the utility possibility frontier in financial
markets. The model includes (1) the utility form (2) the price depending on an agent’s utility. We
apply the time-additive utility functional with the mean-variance utility function as the utility form.
To derive the utility possibility frontier, we obtain a pricing formula that depends on the utility of an
agent. We find a characteristic of the utility-depended pricing formula to satisfy Pareto efficiency.
Moreover, we try to generalize the asset class while resricting the number of market participants
and their utility forms.

The contribution of this study is to provide a framework to explicitly describe social welfare
using the utility frontier curve satisfying Pareto efficiency. Moreover, the payoff function of assets
is generalized. This enables us to examine various asset classes, such as derivatives, insurance, and
so on. In fact, as a numerical example, we consider a simple insurance contract with default. We
then describe that social welfare under the defaultable setting is lower than under the non-default
environment, as shown in Acharya and Bisin (2014), and Geanakoplos (1997).

The rest of this paper is organized as follows. In the next section, we present an economic
model. In Section 3, we consider the utility maximization problems of agents, and describe the
utility possibility frontier. In Section 4, we carry out the numerical implementation for a simple
insurance contract. Section 5 concludes this study.
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2 Model

Let us consider a one-period economy. In our economy, two agents consume their endowments at
each time (t = 0, T ) and trade a risky asset at time 0. We denote the price of the asset at time 0
by q, and its value (or payoff) at time T by g(T ). Our risky asset includes stock, derivatives, and
insurance. For convenience, we assume an agent is a buyer (“b”) of the asset and the other is a
seller (“s”) of the asset. We denote kj (j = b, s) for the trading volume of the asset that agent j
is willing to have. We suppose that the endowments of both agents at time T are random. If the
endowment of an agent is negatively correlated with the asset price (or its payment amount) at
time T , the agent must have an incentive to trade the asset. Thus, the risky asset plays the role
of insurance. In the following numerical example, we consider that the agent purchases an asset as
insurance.

We denote the endowment of agent j (j = b, s) at time t by wj
t , and the consumption of agent

j (j = b, s) at time t by xj
t . Then, the budget constraint of agent b (i.e., the buyer) is as follows:

xb
0 ≤ wb

0 − kbq,

xb
T ≤ wb

T + kbg(T ).

On the other hand, the budget constraint of agent s (i.e., the seller) is as follows:

xs
0 ≤ ws

0 + ksq,

xs
T ≤ ws

T − ksg(T ).

3 Optimization Problem

We suppose that the utility functions of agents are the so-called time-additive type, and agents
determine the trading volume k of the asset to maximize their (expected) utilities, that is, the
utility of agent j (j = b, s) is represented by

Uj(x
j
0, x

j
T ) = u(xj

0) + e−δjTu(xj
T ),

where
uj(x) = E[x]− γj

2
V ar[x]

for j = b, s, and γj is the risk-aversion and δj is the time preference of agent j. Note that uj(·) is the
mean-variance utility, which has been used to describe the optimization problem for economic agents
(Acharya and Bisin 2014, Bessembinder and Lemmon 2002, Huh and Infante 2016, and Takino
2016). Although several utility functions are applied to the time-additive utility form (c.f.,Chapter
6 in Munk 2013), we think that the mean-variance type is useful for explicitly describing the utility
possibility frontier.

The optimization problem of agent b is

maxkb Ub(x
b
0, x

b
T ),

s.t. xb
0 = wb

0 − kbq,

xb
T = wb

T + kbg(T ).

The problem of agent s is

maxks Us(x
s
0, x

s
T ),

s.t. xs
0 = ws

0 + ksq,

xs
T = ws

T − ksg(T ).
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In the previous section, the budget constraints are represented with inequality. However, as the util-
ity functions of both agents are monotonically increasing with their consumptions, the constraints
hold in the equality.

By substituting the budget constraints into objective functions, the above problems are rewritten
as

max
kb

Ub(w
b
0 − kbq, w

b
T + kbg(T ))

= max
kb

ub(w
b
0, w

b
T )− kbq + e−δbT

(
E[g(T )]kb −

γb
2
V ar[g(T )]k2b − γbCov[wb

T , g(T )]kb
)
.

(3.1)

The problem of agent s is

max
ks

Us(w
s
0 + ksq, w

s
T − ksg(T ))

= max
ks

us(w
s
0, w

s
T ) + ksq − e−δsT

(
E[g(T )]ks +

γs
2
V ar[g(T )]k2s − γsCov[ws

T , g(T )]ks
)
.

(3.2)

We set

αj =
e−δjT

γjV ar[g(T )]
,

βj =
E[g(T )]− γjCov[wj

T , g(T )]

γjV ar[g(T )]

(3.3)

for j = b, s. Then, the optimization problems (3.1) and (3.2) are given by

max
kb

Ub(w
b
0 − kbq, w

b
T + kbg(T )) = max

kb

ub(w
b
0, w

b
T )− kbq −

1

2αb
k2b +

βb

αb
kb, (3.4)

max
ks

Us(w
s
0 + ksq, w

s
T − ksg(T )) = max

ks

us(w
s
0, w

s
T ) + ksq −

1

2αs
k2s −

βs

αs
ks, (3.5)

respectively.
From the first order condition, the optimal trading volumes for the asset are

kb = −αbq + βb, (3.6)

ks = αsq − βs. (3.7)

While we must have an equilibrium volume and price for the asset from (3.6) and (3.7), as Takino
(2016), we proceed to consider the condition of Pareto efficiency in deriving the utility possibility
frontier.

3.1 Utility Possibility Frontier

If the market is Pareto efficient, the utility possibility frontier is defined by

Us = f(Ub),

satisfies

f ′ < 0 or
∂Us

∂Ub
< 0.
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To ensure Pareto efficiency, we first consider the optimized utility U∗
b of agent b. By substituting

(3.6) into (3.4), we have

U∗
b = ub(w

b
0, w

b
T ) +

1

2αb

(
q − βb

αb

)2

. (3.8)

Fixing the utility level of agent b as Ub, (3.8) is

Ub = ub(w
b
0, w

b
T ) +

1

2αb

(
q − βb

αb

)2

. (3.9)

(3.9) gives

q(Ub) =
βb ±

√
2αb(Ub − ub(wb

0, w
b
T ))

αb
. (3.10)

(3.10) is a pricing formula for the asset and depends on the utility of agent b. The sign of the
square-root in (3.10) might be determined to satisfy Pareto efficiency. Unfortunately, we cannot
determine the sign at this stage.

Next, the optimal utility of agent s is given by substituting (3.7) into (3.5). That is,

Us = us(w
s
0, w

s
T ) +

1

2αs

(
q − βs

αs

)2

. (3.11)

Substituting (3.10) into (3.11), we have candidates for the utility possibility frontier, that is,

Us = f(Ub) := us(w
s
0, w

s
T ) +

1

2αs

⎛

⎝
βb ±

√
2αb(Ub − ub(wb

0, w
b
T ))

αb
− βs

αs

⎞

⎠

2

. (3.12)

In the next section, we numerically implement the utility possibility frontier (3.12), and analyze
the characteristic of (3.10) to satisfy Pareto efficiency.

4 Numerical Example

We consider a simple finite state model based on Acharya and Bisin (2014). The economic state at
time T takes two states, that is, “Good” (“G”) and “Bad” (“B”). We suppose that the probability
ofG is p (0 ≤ p ≤ 1, automatically, the probability of B is 1−p). Moreover, we consider a defaultable
economy. That is, agent s fails to payout the exact claim value g(T ) due to the economic state at
time T .

The endowment of agent b in state G is wb
T = wb(G) > 0 and that in state B is zero. The

endowment of agent s in state G is zero, and that in state B is ws
T = ws

ND(B) without default
and ws

T = ws
D(B) with default (ws

ND(B) > ws
D(B) ≥ 0, without loss of generality). The payoff

of the contingent claim in state G is zero, and that in state B is g(T ) = R without default and
g(T ) = RD with default (R > ws

D(B) > RD ≥ 0, without loss of generality). The amount of R is
predetermined between agents; however, agent s cannot exactly pay R when she/he defaults. Note
that the assumptions of ws

ND(B) > ws
D(B) and R > ws

D(B) > RD shows why agent s is going to
default. We suppose that the default probability of agent s is pD (0 ≤ pD ≤ 1). Then, pD = 0
implies that there is no default in the economy. Furthermore, the asymmetry of agents’ endowments
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Parameter Value

T 0.25
p 0.50
wb

0 5.00
ws

0 5.00
wb(G) 10.00

ws
ND(B) 12.00
ws

D(B) 6.00
R 10.00
RD 6.00
γb 1.00
γs 1.00
δb 0.00
δs 0.00

Table 1: Parameters used in the numerical example. The values are based on Acharya and Bisin
(2014)

at each state motivates them to trade the contingent claim. Hence, the agents effectively trade the
contingent claim g as insurance. Table 1 lists the parameter values used in this implementation.

Figure 2 shows the utility possibility frontiers for the transaction of the claim. The curves in
the figure are right-decreasing, that is, any point on the curve satisfies Pareto efficiency. From the
figure, we observe that the curve of “ND” lies at the top, the curve of the default probability 20%
lies in the middle, and the curve of the default probability 50% lies at the bottom. This means that
the likelihood of default deteriorates social welfare. In other words, any points under the default
cases are plotted below the curve of ND. This implies that the transaction of the claim with default
is Pareto inefficient, as shown in Acharya and Bisin (2014), and Geanakoplos (1997). Finally, the
figure is described under the utility-dependent price (3.10) as

q(Ub) =
βb −

√
2αb(Ub − ub(wb

0, w
b
T ))

αb
. (4.1)

5 Concluding Remarks

In this study, we considered Pareto efficiency in financial markets. The contribution of this study is
to provide a framework to explicitly describe social welfare through the utility possibility frontier.
In particular, we proposed the utility possibility frontier with the mean-variance utility. Moreover,
in this study, the payoff function remains general. This enables us to examine various asset classes
such as derivatives and insurance, and not simply basic securities. For example, we consider a
simple insurance contract with default. We then demonstrate that the likelihood of default makes
the market Pareto inefficient or deteriorates social welfare.

Since it does not allow an agent with positive exposure to hedge the default risk, our market
model is incomplete. On the other hand, the introduction of hedging methods, such as collateral-
ization, might improve Pareto efficiency or social welfare. Such analysis is left for future studies.
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Figure 2: Utility possibility frontiers. “ND” is the non-default case (i.e. pD = 0.00%, marked with
“!”), “PD = 20%” (marked with “◦”) and “PD = 50%” (marked with “×”) are the defaultable
cases. “PD = 20%” is the case of pD = 0.20, and “PD = 50%” is the case of pD = 0.50. This figure
is described by (3.12) with (4.1)
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