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1 Introduction

Aumann and Serrano (2008) defined an economic index of riskiness for gambles where

gambles stand for assets, cash flows, projects, etc. with uncertain outcomes. The concept

of the economic index of riskiness by Aumann and Serrano (2008) has recently received

a lot of attention in the financial economics literature (cf., e.g., Foster and Hart, 2009;

Hart, 2011; Homm and Pigorsch, 2012a; Kadan and Liu, 2014; Schulze, 2014). Kadan

and Liu (2014) considered a performance index based on the riskiness index by Aumann

and Serrano (2008) and demonstrated the Aumann and Serrano (AS) performance index

can take into account high moments and disaster risk to shed new light on various issues

of financial problems. In their seminal paper of the AS riskiness index, Aumann and

Serrano considered the random variable g of gambles with the property E[g] > 0 and

P (g < 0) > 0 and proved the existence and uniqueness of the AS riskiness index. So far,

applications of the AS riskiness and performance indexes have been confined to gambles

with E[g] > 0 and P (g < 0) > 0. It is fair to say that studies originating from the AS

index have been quite successful.

Certainly there exist plenty of these gambles. However, there also exist other gambles

which do not have the above property. We consider the random variable g of gambles

with E[g] < 0 and P (g > 0) > 0 in this study. For example, commercial lotteries

and gambles in casinos are appropriate to be categorized as gambles with E[g] < 0 and

P (g > 0) > 0. Projects such as oil and natural gas mining and investments in venture

capital would be other examples of such gambles where it is difficult to expect to make

money but there exist chances of a big success. There are also many uncertain cash

flows and projects appropriate to be described as such gambles. That is, there seem to

be plenty of gambles in the real world with the property E[g] < 0 and P (g > 0) > 0.

It may be appropriate to call gambles with the property E[g] < 0 and P (g > 0) > 0

speculative or highly risky since ordinarily only risk loving investors would be interested

in such gambles. The AS riskiness index excludes the important class of these gambles.

The main reason why the AS riskiness index fails to take into account gambles with

E[g] < 0 and P (g > 0) > 0 is that they only consider risk-averse investors. However,

there are risk loving investors who are willing to take risks in such highly risky gambles.
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Then, it seems relevant to provide an index of such gambles. In fact, a study of gambles

with negative expected value was suggested in Aumann and Serrano (2008) as a topic

of future research. So far, however, to the best of our knowledge no studies have been

undertaken of gambles with E[g] < 0 and P (g > 0) > 0. Any proper index of gambles

should treat not only the class of gambles with E[g] > 0 and P (g < 0) > 0 but also the

class of gambles with E[g] < 0 and P (g > 0) > 0. In this paper, we aim to fill the gap

in the literature and provide an index for gambles with E[g] < 0 and P (g > 0) > 0. In

fact, gambles seem to be more often meant to be cash flows with the property E[g] < 0

and P (g > 0) > 0, such as commercial lotteries and games in casinos in the real world.

Therefore, it seems appropriate to extend gambles to include those with E[g] < 0 and

P (g > 0) > 0 in order to make the index more practical. In this study, we intend to

consider such gambles from a different point of view.

Kadan and Liu (2014) defined new performance indexes as the reciprocal of the

riskiness index by Aumann and Serrano (2008) and Foster and Hart (2009). In this

paper, we only consider the AS performance index, defined as the reciprocal of the

riskiness index of Aumann and Serrano (2008). The AS performance index is given as

the solution PAS(g) of the following implicit equation given by

E[e−PAS(g)g] = 1

for a gamble g. Kadan and Liu (2014) considered only a positive PAS(g) as the original

AS riskiness index 1/PAS(g) of Aumann and Serrano (2008) was defined in positive

region.

Although the AS riskiness index has had a significant influence on subsequent studies

in the financial economics literature, its connection has received little attention with

other methods of evaluation such as certainty equivalence and utility indifference pricing

in the literature of the so-called expected-utility approach. These methods are known as

promising methods of evaluation of gambles in the expected utility approach (cf., e.g.,

Carmona, 2009). Miyahara (2014) independently proposed a performance index named

as the inner rate of risk aversion (IRRA) that makes the utility indifference price with

the exponential utility function u(x) = 1
α(1 − e−αx) zero where α denotes the degree

of risk aversion. The IRRA of a gamble g is given by the solution α0 of the implicit
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equation

− 1

α0
lnE[e−α0g] = 0.

The utility indifference price of a gamble g is defined to be the solution ν of the

equation E[u(−ν + g)] = u(0) = 0 where u(·) denotes a utility function and E denotes

expectation. When the utility function u(·) is increasing, if g1 ! g2, then ν1 ! ν2

where νi denotes the utility indifference price of gi (i= 1,2) where gi (i= 1,2) denotes

a gamble. The property of ν1 ! ν2 if g1 ! g2 is called monotonicity, which a suitable

evaluation function should satisfy. Hence, the utility indifference price is a value measure

or a suitable evaluation function of gambles taking values corresponding to the value of

gambles as we show below. The utility indifference price of a gamble g with the above

exponential utility function is easily seen to be given by

− 1

α
lnE[e−αg]

since

E[u(−ν + g)] =
1

α
(1− E[e−α(−ν+g)])

=
1

α
(1− eανE[e−αg]).

We remark the above exponential utility function is the only utility function among

C2-class of utility functions under certain conditions (cf. Theorem 3.2.8 of Rolski et al.,

1999 for its proof and Proposition 2 of this study given below), where C2-class is the

class of functions that possess continuous second derivatives. Therefore, the exponential

utility function u(x) = 1
α(1− e−αx) is a special utility function. Miyahara (2010) proved

the utility indifference price, in general, satisfies a desirable criterion called a concave

monetary value measure when the utility function is increasing and concave. And he

named the above utility indifference price with the exponential utility function a risk-

sensitive value measure (RSVM) since it is sensitive to loss of the underlying gamble.

The RSVM is equivalent to certainty equivalence and an evaluation by expected utility

(cf. Miyahara, 2017) when the underlying utility function is u(x) = 1
α(1 − e−αx) where

certainty equivalence of g is defined by the solution c(g) of the implicit equation u(c(g)) =
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E[u(g)]. Therefore, the RSVM provides an evaluation conformable to expected utility,

which implies the evaluation by the RSVM is desirable and proper. The method of

evaluating assets, cash flows, projects, etc. with uncertain outcomes using the RSVM

was introduced by Miyahara (2010) and developed in Miyahara (2014, 2017). Miyahara

restricted the degree of risk aversion α to be positive when he considered the IRRA and

RSVM in Miyahara (2010, 2014) since he was only concerned with risk-averse investors,

where the underlying utility function is given by the above exponential utility function.

However, the above exponential function continues to be a utility function when the

degree of risk aversion α is negative, i.e., when an investor is risk loving. The exponential

utility function is a convex utility function and hence its associated investor is risk loving

when α < 0. And it is a concave utility function and hence its associated investor is risk

averse when α > 0. The utility indifference price is to be defined for a utility function

regardless of its risk preference, i.e., whether an investor is risk averse or risk loving.

Thus it is quite natural to extend the Miyahara’s performance index IRRA originally

defined when α > 0 to when α < 0. The IRRA based on the utility indifference price

with the same exponential utility function when the degree of risk aversion α is negative,

i.e., when the associated investor is risk loving, is the one we consider in this study as

the performance index of gambles with the property E[g] < 0 and P (g > 0) > 0. The

IRRA continues to be a performance index of gambles when α < 0 as we show in this

study. The IRRA was already applied in some areas (cf., Ban et al., 2016; Furukawa et

al., 2018; Hodoshima, 2019) assuming the underlying investor to be risk averse. One may

call the utility indifference price with the exponential utility function when the degree

of risk aversion is negative a profit-sensitive value measure since it is sensitive to gain of

the underlying gamble instead of loss of the underlying gamble.

A sufficient condition of the existence and uniqueness of the positive IRRA given by

Miyahara (2014), where the underlying investor is assumed to be risk averse, is given as

follows:

The moment-generating function (MGF) E[etg] of a gamble g is finite for any t(−∞ <

t < ∞), E[g] > 0, and P (g < 0) > 0,
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which is different from the sufficient condition E[g] > 0 and P (g < 0) > 0 for finite

gambles (cf. Aumann and Serrano, 2008), the sufficient condition for non-finite gambles

given by Homm and Pigorsch (2012b), and the necessary and sufficient condition by

Schulze (2014) for no-finite gambles. We remark Miyahara did not restrict gambles

to finite gambles and considered non-finite gambles which include finite gambles. The

assumption of finite gambles in Aumann and Serrano (2008) is replaced by the existence

of the MGF in Miyahara (2014). The condition of the existence of the MGF in Miyahara

(2014) is also different from the condition of the MGF in Homm and Pigorsch (2012b)

and the necessary and sufficient condition in Schulze (2014).

We provide in this paper a sufficient condition for the negative IRRA, which is ob-

tained using the relationship between concavity and convexity, where the underlying

investor is assumed to be risk loving. The sufficient condition for the negative IRRA we

present in this paper is given as follows:

The MGF E[etg] of a gamble g is finite for any t(−∞ < t < ∞), E[g] < 0, and

P (g > 0) > 0.

We remark the IRRA depends on the gamble only, i.e., on its distribution only, not

on any other parameters such as the utility function of the decision maker or his wealth.

This is the same as in the AS performance index.

In the above definition of the IRRA, when the IRRA α0 is not zero, the implicit

equation of the IRRA is equivalent to the following equation:

E[e−α0g] = 1,

which is equal to the implicit equation of the AS performance index, i.e., equation (1) of

Kadan and Liu (2014). This shows the IRRA is equivalent to the AS performance index,

whether α0 is positive or negative. This is a further justification of the AS performance

index. In other words, the AS performance index can be derived from the proper methods

in the expected-utility approach, i.e., utility indifference pricing, certainty equivalence,

and expected utility maximization, when the underlying utility function is the exponen-
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tial utility function.

It is natural to extend the IRRA to the negative region since the underlying expo-

nential utility function continues to be valid when α is negative as well as positive. As

a result, we also enlarge the AS riskiness index to gambles with the property E[g] < 0

and P (g > 0) > 0 since the AS performance index is the reciprocal of the AS riskiness

index (cf. Kadan and Liu, 2014). We provide empirical examples of the negative IRRA,

which indicate examples of the negative IRRA are abundant.

The rest of the paper is organized as follows. Section 2 presents definitions and

properties of the RSVM, i.e., the utility indifference price with the exponential utility

function. Section 3 presents a definition of the IRRA and a sufficient condition of the

existence and uniqueness of the negative IRRA. Section 4 states the relationship between

the IRRA and AS performance index. Section 5 presents empirical examples of the

negative IRRA. Section 6 presents concluding comments.

2 Risk-Sensitive Value Measure (RSVM)

The idea of the RSVM was first introduced by Miyahara (2010), where the degree of risk

aversion α was assumed to be positive (α > 0). In this paper, we extend the idea of the

RSVM to the case of α ∈ (−∞,∞), and the results obtained in Miyahara (2010, 2014,

2017, 2018) are extended and generalized. The proofs of the theorems in this section and

next section are omitted (given in a discussion paper Hodoshima and Miyahara (2019)),

because they are obtained similarly as the old proofs for the case of α > 0 in Miyahara

(2010, 2014, 2017, 2018).

2.1 Utility Indifference Price and Definition of the RSVM

We first give three definitions of utility functions.

Definition 1 (Utility Function) A real valued function u(x) defined on (−∞,∞) is

called a utility function if it satisfies the following conditions:

1. u(x) is a continuous and strictly increasing function,

2. u(0) = 0.
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Remark 1 The utility function is standardized to take 0 at x = 0 in the above definition.

We adopt a weak definition of the utility function because we treat the risk-loving case as

well as the risk-averse case below. We also remark that the domain of the utility function

is (−∞,∞).

Definition 2 (Risk-Averse Utility Function) A utility function u(x) is called a risk-

averse (or concave) utility function if it is concave.

Utility functions of this type are associated with risk-averse investors.

Definition 3 (Risk-Loving Utility Function) A utility function u(x) is called a risk-

loving (or convex) utility function if it is convex.

Utility functions of this type are associated with risk-loving investors.

We next define the utility indifference price of a gamble. A gamble denotes a random

variable with uncertain outcomes.

We assume that a probability space (Ω,F , P ) is given and that all the random vari-

ables are defined on this probability space.

Definition 4 Let g be a random variable. For a utility function u(x), the solution v of

the following equation

E[u(g − v)] = 0 (1)

is called the utility indifference price of g.

Next, we restrict a set of random variables we treat in this paper to satisfy the

following property.

Definition 5 L = {g : E
[
etg

]
is finite for−∞ < t < ∞}

In the above definition, E
[
etg

]
is of course the MGF of g. The space L has the

following desirable property.

Theorem 1 L is a linear space.
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We restrict g to be in the space L in our discussions below. Our first result for the

existence of the utility indifference price is given as follows.

Theorem 2 The utility indifference price is unique if it exists.

This result follows easily from the strictly increasing property of a utility function.

We here introduce a special utility function, the exponential function u(α)(x). The

reason why we focus our attention on the exponential function is explained in §2.2.

Definition 6 The following function u(α)(x) defined on (−∞,∞),

u(α)(x) =

{
1
α (1− e−αx) , α ̸= 0,
x, α = 0,

(2)

is called the exponential utility function with the degree of risk aversion α.

Then we obtain the following theorems.

Theorem 3 (1) The function u(α)(x) is a continuous function of two variables (α, x).

(2) For a fixed α, u(α)(x) is a utility function.

(3) For α > 0, u(α)(x) is a strictly concave function.

(4) For α < 0, u(α)(x) is a strictly convex function.

(5) The coefficient of absolute risk aversion defined by Arrow (1971) and Pratt (1964)

of u(α)(x) is α.

(6) If −∞ < α1 < α2 < ∞, then u(α1)(x) > u(α2)(x) for x ̸= 0.

Theorem 4 (1) For the exponential utility function u(α)(x), α ∈ (−∞,∞), the utility

indifference price of g ∈ L exists and is unique.

(2) The explicit form of it is

− 1

α
ln
(
E
[
e−αg]) , for α ̸= 0, (3)

and

E[g], for α = 0. (4)

Based on this theorem, we give the definition of the RSVM U (α)(g).
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Definition 7 For α ∈ (−∞,∞) and g ∈ L, the following value

U (α)(g) =

{
− 1

α ln
(
E
[
e−αg]) , α ̸= 0,

E[g], α = 0.
(5)

is called the risk-sensitive value of g with the degree of risk aversion α, and the functional

U (α)(·) is called the risk-sensitive value measure (RSVM) with the degree of risk aversion

α.

Remark 2 The RSVM U (α)(g) of g is equal to certainty equivalence c(α)(g), where

u(α)(c(α)(g)) = E[u(α)(g)]. Therefore, the evaluation by the RSVM is equivalent to the

evaluation by expected utility of the exponential utility function.

2.2 Properties of the RSVM

We first investigate the properties of the function U (α)(g) of α ∈ (−∞,∞) for a fixed

g ∈ L.

Theorem 5 Let g be a random variable in L. Then U (α)(g) has the following properties:

(1) U (α)(g) is a continuous function of α ∈ (−∞,∞).

(2) If g is not constant (i.e., P (g ̸= E[g]) > 0), then U (α)(g) is a strictly decreasing

function of α, i.e.,

U (α1)(g) > U (α2)(g), for α1 < α2. (6)

Before we explain the properties of the functional U (α)(g) of g ∈ L for a fixed

α ∈ (−∞,∞), we need to prepare some concepts.

Definition 8 (concave monetary value measure) A function v(·) defined on a lin-

ear space L of random variables is called a concave monetary value measure (or concave

monetary utility function) on L if it satisfies the following conditions:

(i) (Normalization) : v(0) = 0,

(ii) (Monetary property) : v(g +m) = v(g) +m, where m is non-random,

(iii) (Monotonicity) : (a) If g1 ! g2, i.e., P (g1 ! g2) = 1, then v(g1) ! v(g2),

(b) If g1 ! g2 and P (g1 > g2) > 0, then v(g1) > v(g2),

(iv) (Concavity) : v(λg1 + (1− λ)g2) ! λv(g1) + (1− λ)v(g2) for 0 " λ " 1,

(v) (Law invariance) : v(g1) = v(g2) whenever law(g1) = law(g2),
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The concept of a concave monetary value measure (or concave monetary utility func-

tion) was introduced in Cheridito et al. (2006).

Remark 3 v(m) = m follows from (i) and (ii).

Remark 4 Set λ = 1/2 and put g1 = g and g2 = −g1 = −g in the concavity condition.

Then we have

v(
1

2
g + (1− 1

2
)(−g)) ! 1

2
v(g) + (1− 1

2
)v(−g).

The left hand side of the above inequality is equal to 0. Hence, we have

v(g) " −v(−g).

When v(g) > 0, the above inequality implies v(−g) < 0 and |v(−g)| ! v(g). This implies

the investor who obeys the concave monetary value measure is more sensitive to the loss

of g being negative than the gain of g being positive.

Definition 9 (convex monetary value measure) A function v(·) defined on a lin-

ear space L of random variables is called a convex monetary value measure (or convex

monetary utility function) on L if it satisfies the following conditions:

(i) (Normalization) : v(0) = 0,

(ii) (Monetary property) : v(g +m) = v(g) +m, where m is non-random,

(iii) (Monotonicity) : (a) If g1 ! g2, i.e., P (g1 ! g2) = 1, then v(g1) ! v(g2),

(b) If g1 ! g2 and P (g1 > g2) > 0, then v(g1) > v(g2),

(iv) (Convexity) : v(λg1 + (1− λ)g2) " λv(g1) + (1− λ)v(g2) for 0 " λ " 1,

(v) (Law invariance) : v(g1) = v(g2) whenever law(g1) = law(g2),

Remark 5 Similarly as Remark 4, it is shown that the investor who obeys the convex

monetary value measure is more sensitive to the gain of g being positive than the loss of

g being negative.

Now we can state essential properties of the RSVM. The first theorem is given as

follows.
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Theorem 6 For α > 0, the RSVM U (α)(·) is a concave monetary value measure.

Remark 6 This result was proved in a more general form in Miyahara(2010) as follows.

Proposition 1 (Proposition 2 of Miyahara(2010)) For a risk-averse utility func-

tion u(x), the utility indifference value measure v(·) of u(x) is a concave monetary value

measure.

The second theorem is given as follows.

Theorem 7 For α < 0, the RSVM U (α)(·) is a convex monetary value measure.

We here introduce a concept relating to the value measure.

Definition 10 (Independence-Additivity) If a value measure v(·) satisfies the fol-

lowing condition

(independence-additivity): υ(g1 + g2) = υ(g1) + υ(g2) if g1 and g2 are independent,

then v(·) is said to have the independence-additivity property.

This property is desirable for the project evaluation functional, especially when we

want to evaluate portfolios of projects.

The following theorem is easily proved.

Theorem 8 The RSVM U (α)(g) has the independence-additivity property.

The converse of this theorem was given by Rolski et al. (1999). We present it as

follows.

Proposition 2 Let v(g) be a utility indifference price of g determined by a utility

function u(x) which is of C(2)-class, increasing, concave (convex), and normalized as

u(0) = 0, u′(0) = 1, and u′′(0) = −α. Then, if v(g) has the independence-additivity

property, u(x) is of the following form

u(x) = u(α)(x) =
1

α

(
1− e−αx

)
. (7)

The above proposition implies the exponential utility function and the RSVM are

respectively the only utility function and the only utility indifference value measure

among C(2)-class of utility functions that have the independence-additivity property.
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2.3 Characterization of the RSVM

The properties of RSVM U (α)(g) for positive α have been investigated in Miyahara(2010,

2014, 2017, 2018). We summarize the properties of RSVM obtained there:

(1) The RSVM is a concave monetary value measure.

(2) The RSVM is the utility indifference price of the exponential utility function, and it

has the risk aversion parameter α.

(3) By the use of the RSVM, the scale risk and optimal scale of a project can be discussed.

(4) The RSVM has the independence-additivity property, and the RSVM is almost the

only one with this property in the class of all utility indifference prices.

(5) The dynamic RSVM has the time-consistency property, and the RSVM is almost the

only one with this property in the class of all utility indifference prices.

These properties are all desirable properties that a reasonable value measure should

satisfy. And we would like to emphasize that the RSVM is the only value measure with

all the properties stated above, in the class of utility indifference value measures. Hence,

the RSVM is an excellent and exceptional value measure.

Remark 7 The above properties of the RSVM are easily extended to the case of −∞ <

α < ∞ in a natural way.

3 Inner Rate of Risk Aversion (IRRA)

The idea of the IRRA was introduced first in Miyahara (2014), and the case of α ! 0

was investigated in Miyahara (2018) a little more precisely.

3.1 Definition and Existence of the IRRA

We first give the definition of the IRRA.

Definition 11 Let g be a random variable in L. Then the solution α0 of the following

equation

U (α)(g) = 0 (8)

is called the IRRA of g and denoted by α0(g) .
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Let α be the degree of risk aversion of an investor, and suppose that g is a non-

deterministic asset. Then, from Theorem 5 (2), U (α)(g) is a strictly decreasing function

of α. Therefore, if α < α0(g), then U (α)(g) > U (α0(g))(g) = 0 and the investor with the

degree of risk aversion α is less risk averse than the investor with α0(g) and accepts g.

On the other hand, if α > α0(g), then U (α)(g) < U (α0(g))(g) = 0 and the investor with

the degree of risk aversion α is more risk averse than the investor with α0(g) and rejects

g. From the above consideration, we can say that if α0(g1) < α0(g2), then α0(g2) is

more valuable than α0(g1) in the sense of the RSVM.

As a corollary of Theorem 5, we obtain the following theorem.

Theorem 9 For a not constant g in L (i.e., P (g ̸= E[g]) > 0), the IRRA of g is

uniquely defined if it exists.

Remark 8 Since U (α)(0) = 0, −∞ < α < ∞, α0(0) is not defined uniquely. But it is

convenient to define as

α0(0) = 0. (9)

For the existence of the IRRA, we have the following result.

Theorem 10 Assume that a random variable g ∈ L satisfies the following conditions

E[g] > 0 and P (g < 0) > 0. (10)

Then the IRRA α0(g) of g exists uniquely and is positive.

Theorem 11 Assume that a random variable g ∈ L satisfies the following conditions

E[g] < 0 and P (g > 0) > 0. (11)

Then the IRRA α0(g) of g exists uniquely and is negative.

3.2 Properties of the IRRA

As a value functional on the space L, the IRRA α0(·) has the following natural property.

Theorem 12 Let g1 and g2 be random variables in L and assume that α0(g1) and α0(g2)

exist. Then, if g1 " g2 and P (g1 < g2) > 0, it holds that α0(g1) < α0(g2).
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From Theorem 12 it follows that the IRRA has the monotonicity property.

Remark 9 See Miyahara (2018) for the details of the properties of IRRA in the case of

α ! 0.

4 Relationship between the IRRA and AS perfor-
mance index

We have established the existence and uniqueness of the negative IRRA in the previous

section when the degree of risk aversion is negative, i.e., for gambles with the property

E[g] < 0 and P (g > 0) > 0. The negative IRRA of a gamble g is the solution α0(< 0)

for the implicit equation

U (α0)(g) ≡ − 1

α0
lnE[e−α0g] = 0.

When the negative α0 exists in the above equation, it is also the solution of the following

implicit equation

E[e−α0g] = 1.

The solution α0 of the above implicit equation is the AS performance index (cf., Aumann

and Serrano, 2008 and Kadan and Liu, 2014). Therefore, the existence and uniqueness

of the negative IRRA are equivalent to those of the negative AS performance index.

Hence, our extension of the IRRA when the degree of risk aversion is negative results

in extension of the AS performance index when the degree of risk aversion is negative.

The same applies to the equivalence of the positive IRRA and positive AS performance

index when the degree of risk aversion is positive, the case the original IRRA and AS

performance indexes treated. Hence, the IRRA is equivalent to the AS performance

index when the degree of risk aversion is negative as well as positive.

The original AS riskiness index and hence the original AS performance index restrict

the underlying investor to be risk averse. However, letting the AS riskiness and perfor-

mance indexes negative makes the underlying investor risk loving. We have the following

equation by rewriting the implicit equation for the AS performance index:

1

α0
(1− E[e−α0(w0+g)]) =

1

α0
(1− e−α0w0),
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for some initial wealth w0. The two implicit equations for the AS performance index are

equivalent regardless of w0. Therefore, α0 is the level of absolute risk aversion that makes

an investor with the exponential utility function indifferent between taking g and the

status quo, regardless of the initial wealth w0 (cf. Kadan and Liu, 2014), when α0 is

positive as well as negative. Then, the level of α0 continues to be an index of performance

when α0 is both positive and negative. Therefore, the AS index continues to be an index

of riskiness or performance when it is both positive and negative.

The AS riskiness index is derived from the axioms of duality and positive homogeneity

(cf. Theorem A of Aumann and Serrano, 2008). Aumann and Serrano showed that the

AS index is related to constant absolute risk aversion with an exponential utility function

u(x) = −e−αx, where the coefficient of absolute risk aversion does not depend on the

investor’s wealth (cf. Theorem B of Aumann and Serrano, 2008). On the other hand,

the RSVM and IRRA begin with the utility indifference price of the exponential utility

function u(x) = 1
α (1− e−αx). The idea of the IRRA is straightforward and the IRRA is

naturally defined when the investor is risk averse and risk loving.

5 Empirical Examples of the negative IRRA (AS
performance index)

In this section, we present three empirical examples of the negative IRRA or negative AS

performance index. We derive the IRRA or AS performance index using the generalized

method of moments estimation (GMME) as in Kadan and Liu (2014), assuming each data

to be realizations of a random sample. We obtain the GMME by grid search. We pick up

assets with negative means as candidates of the negative IRRA or AS performance index.

We have easily succeeded in obtaining the negative IRRA or negative AS performance

index by finding assets with negative means.

We first employ daily return data of the crude oil WTI future price in percentages

from January 2, 2008 to December 29, 2017, the period of covering the financial crisis

of 2008-2009 up to the end of 2017. Summary statistics of the return data are given

as follows: mean −0.018, standard deviation 2.475, skewness 0.159, and kurtosis 7.648.

Mean, an estimate of expectation of the underlying distribution, being negative indicates

16



part of the sufficient condition of the existence and uniqueness of the negative IRRA is

satisfied. In this case, the IRRA is −0.006. The AS performance index is the same.

Next, we employ daily return data of the gold future closing price in percentages

from January 2, 2013 to December 31, 2015. Summary statistics of its return data are

given as follows: mean −0.061, standard deviation 0.040, skewness −1.046, and kurtosis

13.083. In this case, the IRRA or AS performance index is −0.102.

The third data is daily return data of the IBM daily closing price in percentages from

October 2, 2012 to April 28, 2017. Summary statistics of its return data are given as

follows: mean −0.024, standard deviation 0.035, skewness −1.096, and kurtosis 9.851.

Again mean is negative. In this case, the IRRA or AS performance index is −0.034.

These three empirical examples indicate gambles with the negative IRRA or negative

AS performance index are abundant in the real world. Hence, use of the IRRA or AS

performance index would be quite useful as an index of evaluating gambles such as assets,

cash flows, projects, etc. with uncertain outcomes when gambles g have not only the

property with E[g] > 0 and P (g < 0) > 0 but also the property with E[g] < 0 and

P (g > 0) > 0.

6 Concluding comments

Aumann and Serrano (2008) proposed the economic index of riskiness for gambles. The

riskiness index of Aumann and Serrano has recently received a lot of attention in the

financial economics literature. However, the index is defined for the gamble g with the

property E[g] > 0 and P (g < 0) > 0. Although this class of gambles is abundant

in the world, there are also plenty of other gambles with the property E[g] < 0 and

P (g > 0) > 0. It is desirable to provide an index for this neglected class of gambles in

the literature with the property E[g] < 0 and P (g > 0) > 0.

We have provided an index for this neglected class of gambles by extending the work

of Miyahara (2014). Miyahara (2014) proposed the concept of the IRRA based on the

utility indifference price with the exponential utility function as an index of showing

the desirability of assets, uncertain projects, future cash flows, etc. when the degree of

risk aversion is positive. Since the underlying exponential utility function continues to
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be valid when the degree of risk aversion is negative, i.e., when the associated investor

is risk loving, the IRRA is valid as the index derived from the utility indifference price

when the degree of risk aversion is both positive and negative. It is natural to extend the

IRRA when the utility function is risk loving since the utility indifference price is to be

defined regardless of risk preference. Any appropriate index should be in principle able

to deal with both types of gambles since the neglected class of gambles is also abundant

in the real world. We have proved the existence and uniqueness of the IRRA under our

sufficient condition when the degree of risk aversion is negative, using the relationship

between concavity and convexity. Since the IRRA can be shown to be equivalent to

the AS performance index, we have consequently extended the AS performance index

when the degree of risk aversion is negative, i.e., for gambles with the property E[g] < 0

and P (g > 0) > 0. This is a further justification of the AS performance index since

it can be derived from the proper methods in the expected-utility approach, i.e., utility

indifference pricing, certainty equivalence, and expected utility. As a result, we have also

extended the AS riskiness index when the degree of risk aversion is negative since the

riskiness index is just the reciprocal of the performance index for both the IRRA and

AS performance index.

We have also shown empirical examples of the negative IRRA or negative AS perfor-

mance index. These examples indicate the class of gambles with the property E[g] < 0

and P (g > 0) > 0 is prevalent. Therefore, extending the IRRA or AS index to gambles

with E[g] < 0 and P (g > 0) > 0 makes it more practical to be applicable to many

gambles in reality.
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Appendix: Proofs
The proofs we provide in this paper are similar to the proofs in Miyahara (2010, 2014,

2017, 2018). Only the case α ! 0 was treated in these previous papers. In this paper,

we extend theorems and proofs in these previous studies to the case α ∈ (−∞,∞) and

simplify some of the proofs in the previous studies.

A Risk-Sensitive Value Measure (RSVM)

A.1 Utility Indifference Price and the Definition of the RSVM

(Proof of Theorem 1) Let g1, g2 ∈ L and a, b ∈ (−∞,∞). Then, using the Schwarz’s

inequality, we obtain

E[et(ag1+bg2)] = E[et(ag1)et(bg2)] "
√
E[e2tag1 ]

√
E[e2tbg2 ] < ∞. (12)

This implies Theorem 1.

(Q.E.D.)

(Proof of Theorem 2)

This result follows easily from the strictly increasing property of a utility function.

(Q.E.D.)

(Proof of Theorem 3)

(1) The continuity of u(α)(x) at a point (α, x),α ̸= 0 is trivial. The continuity of u(α)(x)

at a point (0, x) follows from the fact that

lim
α→0

u(α)(x) = lim
α→0

1

α

(
1− e−αx

)
=

∂

∂α

(
−e−αx

)
|α=0 = x. (13)

(2) Trivial.

(3) Trivial.

(4) Trivial.

(5) It is well-known.

(6) Trivial.

(Q.E.D.)
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(Proof of Theorem 4)

1. The case of α ̸= 0.

The utility indifference price v of g is the solution of the following equation,

E
[
u(α)(g − v)

]
=

1

α
E
[
1− e−α(g−v)

]
=

1

α

(
1− E

[
e−αg] eαv

)
= 0. (14)

From this we obtain

eαv =
(
E
[
e−αg])−1

, (15)

and hence

v = − 1

α
ln
(
E
[
e−αg]) . (16)

2. The case of α = 0.

The defining equation of the utility indifference price of g is

E
[
u(α)(g − v)

]
= E [(g − v)] = E [g]− v = 0. (17)

So, we obtain the result v = E [g].

(Q.E.D.)

A.2 Properties of the RSVM

(Proof of Theorem 5)

(1) From the assumption of the integrability, E
[
etg

]
< ∞,−∞ < t < ∞, the continuity

of U (α)(g) follows.

(2) Put v1 = U (α1)(g) and v2 = U (α2)(g). Since u(α1)(x) > u(α2)(x) for x ̸= 0, we obtain

0 = E
[
u(α1)(g − v1)

]
> E

[
u(α2)(g − v1)

]
, (18)

where we use the assumption that g is not constant. Since u(α2)(x) is a strictly increasing

function of x, it follows from this inequality that v2 < v1.

(Q.E.D.)

(Proof of Theorem 6)

(i) trivial.
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(ii) follows from the following equation

− 1

α
ln
(
E
[
e−α(g+m)

])
= − 1

α
ln
(
E
[
e−αg] e−αm

)
= − 1

α
ln
(
E
[
e−αg])+m. (19)

(iii) Put v1 = U (α)(g1) and v2 = U (α)(g2).

(a) The utility function u(α)(x) is a strictly increasing function of x. So we obtain

0 = E
[
u(α)(g1 − v1)

]
! E

[
u(α)(g2 − v1)

]
. (20)

From this inequality it follows that v1 ! v2.

(b) In this case, it holds that

0 = E
[
u(α)(g1 − v1)

]
> E

[
u(α)(g2 − v1)

]
. (21)

From this it follows that v1 > v2.

(iv) Put v1 = U (α)(g1) and v2 = U (α)(g2).

Since u(α)(x) is a concave function of x, we obtain the following relationship

E
[
u(α)(λg1 + (1− λ)g2)− (λv1 + (1− λ)v2)

]

= E
[
u(α)(λ(g1 − v1) + (1− λ)(g2 − v2))

]

! E
[
λu(α)(g1 − v1) + (1− λ)u(α)(g2 − v2)

]

= λE
[
u(α)(g1 − v1)

]
+ (1− λ)E

[
u(α)(g2 − v2)

]

= 0. (22)

From this inequality it follows that λv1 + (1− λ)v2 " v{λg1+(1−λ)g2}

where v{λg1+(1−λ)g2} ≡ U (α)(λg1 + (1− λ)g2).

(Remark: If P (g1 ̸= g2) > 0, then λv1 + (1− λ)v2 < v{λg1+(1−λ)g2} for λ ̸= 0, 1.)

(v) Trivial.

(Q.E.D.)

(Proof of Proposition 1) Similarly as in the proof of Theorem 6, Proposition 1 can be

proved using the assumption of the concave utility function.

(Proof of Theorem 7)

The results (i), (ii),(iii), and (v) are already proved in Theorem 6. The result (iv) is
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similarly proved as in the proof of (iv) of Theorem 6 by the use of convexity of u(α)(x)

instead of concavity.

(Q.E.D.)

(Proof of Theorem 8)

Assume that g1, g2 ∈ L are independent. Then

U (α)(g1 + g2) = − 1

α
ln
(
E
[
e−α(g1+g2)

])

= − 1

α
ln
(
E
[
e−αg1

]
E
[
e−αg2

])

. = − 1

α
ln
(
E
[
e−αg1

])
− 1

α
ln
(
E
[
e−αg2

])

= U (α)(g1) + U (α)(g2). (23)

(Q.E.D.)

(Proof of Proposition 2)

See Theorem 3.2.8 of Rolski et al. (1999).

B Inner Rate of Risk Aversion (IRRA)

B.1 Definition and Existence of the IRRA

(Proof of Theorem 9)

By Theorem 5, U (α)(g) is a strictly decreasing continuous function of α. Therefore α0(g)

is unique if it exists.

(Q.E.D.)

(Proof of Theorem 10)

(The idea of the proof is the same as that of the proof of Theorem 2 of Miyahara (2018).)

U (0)(g) = E[g] > 0 and U (α)(g) is a strictly decreasing continuous function of α. So

what we have to prove is that

lim
α→∞

U (α)(g) < 0. (24)
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From the assumption that P (g < 0) > 0, we can choose two constants a > 0 and δ > 0

such that

P (g < −a) > δ > 0. (25)

Then we obtain for any α > 0

E[e−αg] = E[e−αg1(−∞,−a)(g)] + E[e−αg1[−a,∞)(g)]

> E[e−αg1(−∞,−a)(g)] ! eαaP (g < −a)

> eαaδ (26)

where 1(−∞,−a)(g) = 1 if g ∈ (−∞,−a) and 0 otherwise and 1[−a,∞)(g) = 1 if g ∈

[−a,∞) and 0 otherwise. Hence we have

U (α)(g) = − 1

α
ln
(
E
[
e−αg]) < − 1

α
ln (eαaδ) = −a− ln δ

α
. (27)

The right hand side of the above inequality tends to −a when α → ∞, which implies

limα→∞ U (α)(g) < 0.

(Q.E.D.)

(Proof of Theorem 11)

Put gminus = −g. Then gminus satisfies all the assumptions of g in Theorem 10. There-

fore, α0(gminus) exists and it is positive. By the definition of α0(gminus), U (α0(gminus))(gminus) =

0, so we have

− 1

α0(gminus)
ln
(
E
[
e−α0(gminus)gminus

])
= 0 and E

[
e−α0(gminus)gminus

]
= 1. (28)

From this we obtain

1 = E
[
e−α0(gminus)gminus

]
= E

[
e−α0(−g)(−g)

]
= E

[
eα0(−g)g] , (29)

which implies

U (−α0(−g))(g) = − 1

−α0(−g)
ln
(
E
[
e−(−α0(−g))g])

= − 1

−α0(−g)
ln
(
E
[
eα0(−g)g])

= 0. (30)
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The above equality proves that α0(g) exists and it is equal to −α0(−g). Since α0(−g) =

α0(gminus) > 0, α0(g) = −α0(−g) < 0 is proved.

(Q.E.D.)

B.2 Properties of the IRRA

(Proof of Theorem 12)

By the property (iii) (Monotonicity) (b) of Theorem 6, we know

U (α)(g1) < U (α)(g2), −∞ < α < ∞. (31)

Therefore

0 = U (α0(g1))(g1) < U (α0(g1))(g2). (32)

Since U (α)(g2) is a strictly decreasing function of α, we obtain the inequality α0(g1) <

α0(g2).

(Q.E.D.)
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