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Abstract

1. Introduction

The inventory control has long focused on managing certain specific types of probability distribution in
the demand for the products. Since many models include a purely random component in the demand pro-
cess, it will be difficult to describe the inventory control of following products.

Products sensitive to economic conditions: The demand for many products responds in part to
changes in certain the basic economic variables, such as GNP or interest rates. Consequently, many
demand forecasting models include submodels describing these variables; information about such vari-
ables, whether formally modeled or not, is routinely used to project future demands. However, standard
inventory-control models based on purely random demand processes have  no way to use such informa-
tion. Such models can include time-dependent demand,  but not situations where our information about
future demand changes as the time elaspes.

Products subject to obsolescence: Many products are subject to obsolescence; that is, demand is
now healthy, but there is sizeable chance that the demand will drop precipitously in the future. Obvious
examples are products in industries with high rates of technical innovation, such as computers and phar-
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Inventory systems are often subject to randomly changing exogenous environment-conditions that
affect the demand for the product, the supply, and the cost structure.

This paper analyzes a single product, periodic review inventory model with uncertain demand in a
random environment. The demand distribution and cost parameters depend on environmental fluctuations
which is assumed to follows a discrete-time Markov chain. To minimize the total discounted expected cost
(fixed ordering, ordering, holding, and shortage costs), we formulate the model as a dynamic programming
problem. For the finite-horizon model, we prove that the objective function is convex and that the structure
of the optimal policy is characterized by two environmental-dependent critical numbers for the initial
inventory level at each period. Expressions for solving the critical numbers and the optimal planned order-
ing are obtained. We further show that the solution for the finite-horizon model converges to that of the
infinite-horizon model.
Keywords: Inventory; Dynamic programming; Periodic review models
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maceuticals. Also, products in markets with frequent shifts in consumer tastes fit this pattern; including
books, CD, perfumes, and some food items. Both the timing and degree of obsolescence are typically
uncertain. The standard models with uncertain demands are unable to account for this sort of sharp per-
sistent change in the market for a product.

New products: The problems facing managers of inventories of new products are, in a sense, the
reverse of those arising from potential obsolescence: Demand is now just beginning. If the product is
successful, demand will soon increase  rapidly. The size and timing of the increase, however, cannot be
predicted accurately. Again, the difficulty here is demand uncertainty of a very special kind, which stan-
dard models ignore.

So, in this paper, we assume that the environmental process follows a discrete-time Markov chain,
introduce the model with a single-product inventory system of which demand distribution depends on
environmental fluctuations, and discuss the management policy. The main advantage of the Markov-
chain approach is that it provides a natural and flexible framework for formulating various changes
described above.

Inventory models operating in random environments are only scarcely considered in earlier papers.
For example, Kalymon [8] considers a discrete-time inventory purchasing model, in which the unit cost
of the item is determined by a Markov process, and the distribution of demand in each period depends on
the current cost. Feldman [5] models the demand environment as a continuous-time Markov chain.
Given the state of environment, the demand forms a compound-Poisson process. But he studies only the
stationary distribution of the inventory position. Song and Zipkin [14] derive some basic characteristics
of optimal policies and develop algorithms for computing them in a continuous-review inventory model
where the demand process is a Markov modulated Poisson process. Ozekici and Parlar [11] consider infi-
nite-horizon periodic-review inventory models with unreliable suppliers where the demand, supply and
cost parameters change with respect to a randomly changing environment.

The effect of a rondomly changing environment in other stochastic models in operations research is
discussed in following papers. Cinlar and Ozekici [1] studied a model in reliability and maintenance
where the failure rates of the components of a device depend on a semi-Markov environment process.

Eisen and Tainiter [4], Neuts [9], and Prabhu and Zhu [12] introduced a model where the arrival and
service rates depend on a randomly changing environment.

The purpose of this paper is to show the existence of the environmental-dependent optimal (s, S)
policy by analyzing finite- and infinite-horizon periodic-review inventory model where the demand dis-
tribution and cost parameters depend on a Markov environment process.

Under an (s, S) policy, an order is placed to increase the item’s inventory level to the level S as soon
as this inventory level reaches or drops below the level s. So, S and s are the order-up-to point and the
reorder-point, respectively. In this paper, in particular, we focus on the finite-horizon analysis, since it
gives us concrete and realistic insights.

NUCB_Journal.book  128 ページ  ２００４年７月２６日　月曜日　午後３時２７分



The Existence of The Environment-Dependent Optimal (s, S) Policy

－ 129 －

This paper is organized as follows: Section 2 presents the formulation of the general problem as a
dynamic programming model. Section 3, 4, and 5 provide analyses for the single-period, finite-horizon,
and infinite-horizon problems, respectively. The paper concludes with some final remarks in Section 6.

2. Assumption and Notation

Consider a single-product periodic-review inventory system for N-periods.Let the period be numbered
such that the final period is denoted as period 1, while the first period is denoted as period N.

The state of the environment observed at the beginning of period n (n = 1, 2, ..., N) is represented by
In and we assume that I = {In; n ≥ 0} is Markov chain on a countable state space E with a given transition
matrix P = P(i, j) = P[In+1 = j|In = i]. Let Xn denote the inventory level observed at the beginning of
period n. The basic assumption of this model is that the demand distribution and the cost-parameters at
any period depend on the state of the environment at the beginning of that period. Therefore, the decision
maker observes both the inventory level and the environment state to decide on the optimal order quan-
tity which is delivered immediately.

If Dn is the total demand during period n, then the demand process D = {Dn; n ≥ 0} is depend on the
Markov chain I so that its conditional distribution function is Ai(zn) = P[Dn ≤ zn|In = i], with the  proba-
bility density function ai(zn). Also, we assume Ai(0) = 0, ai(·) > 0.

We consider the following four types of costs: if the environmental state is i, a fixed ordering cost Ki

independent of the order quantity, a unit ordering cost ci, a unit holding cost hi incurred at the end of
period, and a unit shortage cost pi incurred at the end of period. To motivate ordering, we assume that
pi >  ci as in standard models. Also, we assume that unsatisfied demands are fully backlogged.

Let Yn(i, xn) be the order-up-to level if the environment is i and the inventory level is xn at the begin-
ning of period n. The admissibility condition requires that Yn(i, xn) ≥ xn since we do not allow for dis-
carding of any inventory without satisfying demand. It is noted that, for any yn, the inventory level Xn is
a Markov chain, where

Xn–1 = xn + [yn (i, xn) – xn]+ – Dn

for n ≥ 0. Figure 1 illustrates the behavior of the inventory level.
Now, let Vi

n(xn) be the minimum expected total discount cost of operating for n-period with the state
of the environment i and the initial inventory level xn, under the best ordering decision is used at period n
through period 1. Then, a dynamic programming equation (DPE) for the problem can be given as

and 

, (1)

Vi
0 x0( ) 0,≡

Vi
n xn( ) min

yn xn≥
= Kiδ yn xn–( ) Gi

n yn( ) cixn–+{ } n 0 i E∈,>,
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Figure 1: The behavior of the inventory level

where 

and 

n > 0, i ∈E (2)
with the expected holding and shortage cost function at period n

and the discount factor α per period.
The decision variable in this model is yn , so (2) plays a central role to find the optimal value .
We assume that all parameters and costs are nonnegative, and that all relevant functions are differen-

tiable.

δ y( n x– n )
1
0




=
if
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yn xn– 0,=

Gi
n yn( ) ciyn Li

n yn( ) α P
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∞
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3. Single-Period Analysis

In this section we analyze the single-period problem for the model introduced in the last section. This
analysis will provide important insights in understanding the two-period analysis and n-period analysis.
We begin by rewriting (1) and (2) as

, (3)

, (4)

where

We first investigate the properties of (4) since it plays a central role in the minimization in (3). We
obtain the first two derivatives of (4) as follows:

, (5)

. (6)

Then,

, (7)

because hi, pi and ai(y1) > 0. So, Gi
1(y1) is convex in y1. It should be noted that the rightside of (5) is

increasing in y1,

(8)

and

. (9)

Therefore, there exists a unique solution such that

. (10)

Let  solve (10), that is,

.

 is nonnegative and finite because  with ( pi –  ci) > 0 and ( pi –  ci) < (hi + pi).

Now the property of (4) can be characterized by using (5) and (6):

(1) For , , , hence  is decreasing and convex.

Vi
1 x1( ) min

y1 x1≥
Kiδ y1 x1–( ) Gi

1 y1( ) cix1–+{ }=

Gi
1 y1( ) ciy1 Li

1 y1( )+=

Li
1 y1( ) hi y1 z1–( ) Ai z1( ) pi z1 y1–( ) Ai z1( )d

y1

∞
∫+d

0

y1

∫=

dGi
1 y1( )

dy1
-------------------- G'i

1 y1( ) ci hi pi+( )Ai y1( ) pi–+==

d 2Gi
1 y1( )

dy1
2

----------------------- G''i
1 y1( ) hi pi+( )ai y1( )==

G''i
1 y1( ) hi pi+( )ai y1( ) 0>=

G'i
1 y1( )

y1 ∞→
lim ci hi 0>+=

G'i
1 y1( )

y1 0→
lim ci pi– 0<=

G'i
1 y1( ) ci hi pi+( )Ai y1( ) pi–+ 0= =

Si
1

Si
1 Ai

1– pi ci–
hi pi+
---------------=

Si
1 0

pi ci–
hi pi+
--------------- 1< <

y1 Si
1≤ G'i

1 y1( ) 0≤ G''i
1 y1( ) 0> Gi

1 y1( )
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(2) For , , , hence  is increasing and convex.

From these observations, it is clear that  attains its global minimum at  with value

.

Figure 2: The form of  and 

Now, consider the minimization in (3), in particular the term . The nature of

 is identical to that of  and it attains the global minimum at  with value

. For , since  is decreasing in y1, there exists a unique solution such that

(11)

Let  solve (11), then it follows from the definition of  and the decreasing property of  for

 that

 for , (12)

and

 for . (13)

The behavior of  and  is shown graphically in Figure 2.
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Based upon the state of the environment i and the initial inventory level x1, the optimal policy can
now be characterized in terms of the two critical numbers  and . For , the advantage

 gained by ordering up to  can offset the fixed ordering cost Ki provided one plans
to order. This follows from (12). On the other hand, for , it is not worthwhile to order
because the fixed ordering cost Ki will offset the expected savings  derived from
ordering  units. This follows from (13). Since ordering will increase the expected cost for

, it is not worthwhile to order, too.
 Now the following summarizes the optimal policy for period 1 and the property of .

(1) the optimal policy for period 1 is given by

where critical numbers  and  are solutions to Eqs. (10) and (11) and are the order-up-to point and
the reorder point, respectively.

(2)  is convex and 

Therefore, the expected cost  under the optimal policy is obtained by substituting 
into (3):

 (14)

And its first two derivatives are

 (15)

 (16)

So,  is quasi-convex in x1.

Si
1 si

1 x1 si
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Gi
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1 Si
1( )–( ) Si

1
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1 x1 Si
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1( )–( )
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x1 Si
1>
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4. n-Period Analysis

In this section, we analyze the n-period problem for the model introduced in Section 2.
To use induction, we assume that the following properties hold for the (n-1)-period problem, where

the state of the environment is j ∈ E.

 =  (17)

 = 0 (18)

 = (19)

(·)  > 0 (20)

 = 

(21)

  < (22)

 =  (23)

 =  (24)

 =  (25)

For an n-period problem, the DPE is given by (1). We investigate the property of (2) since it plays a
central role in the minimization in (1).

First, we rewrite (2) by substituting  from (23) into it as

 = 

. (26)

And, from (24), (25), we obtain the first and the second order derivatives for (26) as follows:

Yn 1–
* j xn 1–,( )

Sj
n 1–     if xn 1– sj

n 1– ,≤

xn 1–     if xn 1– sj
n 1– ,>







G'j
n 1– Sj

n 1–( )

Ki Gi
n 1– Si

n 1–( )+ Gi
n 1– si

n 1–( )

G''j
n 1–

G'j
n 1– yn 1–( )

yn 1 ∞→–

lim cj hj α P j k,( )hk α2 P j k,( )P k l,( )hl+
k l E∈,
∑+

k E∈
∑+ +

… αn 2– P j k,( )P k l,( )…P χ ψ,( )P ψ ω,( )hω 0>∑+

G'j
n 1–

yn 1– 0→
lim yn 1–( ) cj α P j k,( )ck pj 0<–

k E∈
∑–

Vj
n 1– xn 1–( )

Kj Gj
n 1– Sj

n 1–( ) cjxn 1––+

Gj
n 1– xn 1–( ) cjxn 1––





 if xn 1– sj

n 1– ,≤

if xn 1– sj
n 1– .>

V 'j
n 1– xn 1–( )

cj–

G'j
n 1– xn 1–( ) cj–


 if xn 1– sj

n 1– ,≤

if xn 1– sj
n 1– .>

V ''j
n 1– xn 1–( )

0

G''j
n 1– xn 1–( )


 if xn 1– sj

n 1– ,≤

if xn 1– sj
n 1– .>

V j
n 1–
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n yn( ) yn ci{ α P i j,( )cj } Li

n yn( )+
j E∈
∑–

+α P i j,( ) Kj Gj
n 1– Sj

n 1–( ) cjzn–+{ }
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∞
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∑
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 = 

(27)

 = . (28)

Then,

 = 

(29)
because hi, pi, ai(yn) and (·) > 0. So,  is convex in yn. The rightside of (27) is increasing
in yn,

 = 

(30)

and

 = 

(31)

Therefore, there exists a unique solution such that

 = 

(32)

G'i
n yn( ) ci α P i j,( )cj hi pi+( )Ai yn( ) pi– α P i j,( )

j E∈
∑+ +

j E∈
∑–

× G'j
n 1– yn zn–( ) Ai zn( ).d

0

yn sj
n 1––

∫

G''i
n yn( ) hi pi+( )ai yn( ) α P i j,( ) G''j

n 1– yn zn–( ) Ai zn( )d
0

yn sj
n 1––

∫
j E∈
∑+

G''i
n yn( ) hi pi+( )ai yn( ) α P i j,( ) G''j

n 1– yn zn–( ) Ai zn( )d
0

yn sj
n 1––

∫
j E∈
∑+ 0,>

G''j
n 1– Gi

n yn( )

G'i
n

yn ∞→
lim yn( ) ci hi α P i j,( )hj α2 P i j,( )P j k,( )hk

j k E∈,
∑+

j E∈
∑+ +

+α3 P i j,( )P j k,( )P k l,( )+…+αn 1– P i j,( )∑
j k l E∈, ,

∑

×P j k,( )P k l,( )…P χ ψ,( )P ψ ω,( )hω 0,>

G'i
n

yn 0→
lim yn( ) ci α P i j,( )cj pi– α P i j,( ) G'j

n 1– zn–( )
0

sj
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∫
j E∈
∑+

j E∈
∑–

dAi zn( ) ci α P i j,( )ci pi–
j E∈
∑– 0.< <

G'i
n yn( ) ci α P i j,( )cj hi pi+( )Ai yn( ) pi–+

j E∈
∑–

+α P i j,( ) G'j
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0

yn sj
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∫
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Figure 3: The form of  and 

Let  solve (32), then the property of (2) is as follows:
(1) For , hence  is decreasing and convex.
(2) For , hence  is increasing and convex.

  So,  attains its global minimum at  with value .
 Now, consider the minimization in (1), in particular the term . The nature

of  is identical to that of  and it attains the global minimum at  with value
. For , since  is decreasing in yn, there exists a unique solution such that

. (33)

Let  solve (33), then it follows from the definition of  and the decreasing property of  for
 that

for (34)

for (35)

The behavior of  and  is shown graphically in Figure 3.
So, based upon the state of the environment i and the initial inventory level xn, the optimal policy
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to order. This follows from (34). On the other hand, for , it is not worthwhile to order
because the fixed ordering cost Ki will offset the expected savings  derived from
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, it is not worthwhile to order, too.
 Now the following summarizes the optimal policy for period n and the property of .
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(1) the optimal policy for period n is

where critical numbers  and  are solutions to Eqs. (32) and (33) and are the order-up-to point and
the reorder point, respectively.

(2)  is convex and 

Therefore, the expected cost  under the optimal policy is obtained by substituting 
into (1):

      (36)

And its first two derivatives are given by

      (37)

      (38)

So,  is quasi-convex in xn.

5. Infinite-Horizon Analysis

In this section, we consider the case where  n → ∞ for the model introduced in section 1. For an infinite-
horizon problem, the DPE, which is the equivalent to (1), can be written as

(39)

where

. (40)

Our purpose in this section is to show that the DPE  of the finite-horizon problem converges to a
limit function Vi(x), which satisfies (39), (40), and that the order-up-to point  and the reorder point

of the finite-horizon problem also converge to Si, si, respectively, where Si and si specify the optimal
ordering policy for (39).

The following gives the proof.
Consider the convergence of the functional sequence  defined as 
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n     if xn si
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∫
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 = 

 = 

. n = 2, 3, ··· (40)

Note that  is continuous in x from (14) and so is  for each n recursively from (41). And,
for any x, 

therefore,  is nondecreasing recursively from (41), i.e.,

Since  is also continuous in x for sufficiently large X > 0, there exists a maxi-
mum value in the closed interval – X ≤ x ≤ X from the Weierstrass M test. Let the value be

, n = 2, 3 ···,

then, since 

Hence,

Since  is convergent, the positive term series  is uniformly con-
vergent for .
Therefore, because

,

the functional sequence  is uniformly convergent for . Let the limitting function be
Vi(x), then Vi(x) is continuous because of its uniform convergency, and

where

Vi
1 x( ) min

y x≥
Kiδ y x–( ) ci y x–( ) Li y( )+ +{ } ,

V i
n x( ) min

y x≥
Kiδ y x–( ) ci y x–( ) Li y( )+ +{

+α P i j,( ) V j
n 1– y z–( ) Ai z( ) }d

0

∞

∫
j E∈
∑

Vi
1 x( ) V i

n x( )

V i
2 x( ) min

y x≥
Kiδ y x–( ) ci y x–( ) Li y( )+ +{ } V i

1 x( ) 0,≥=≥

V i
n x( ){ }n 1=

∞

0 V i
1 x( ) V i

2 x( ) …… V i
n x( ) … .≤≤≤≤≤

V i
n x( ) V i

n 1– x( )–{ } 0≥

ui
n max

X x X≤ ≤–
= V i

n x( ) V i
n 1– x( )–{ }

V i
n 1+ x( ) V i

n x( )– α P i j,( )min V j
n y z–( ) V j

n 1– y z–( )– Ai z( )d
0

∞

∫
 
 
 

,
y x≥j E∈

∑≤
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n 1+ α P i j,( )uj

n n,
j E∈
∑≤ 1 2 … ., ,=
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n α P i j1,( )uj1

n 1– α2 P i j1,( )P j1 j2,( )uj2
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∑≤
j1 E∈
∑≤
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1 n,
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∞
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n 2=∑ V i
n 1+ x( ) V i
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x X≤

V i
n x( ) V i

1 x( ) V i
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.

Hence,

,

.

So, Gi(y) attains the global minimum at the point such that .
Let Si solve , then, since the functional sequence which is uniformly convergent and con-
tinuous is partial differentiable with term by term,

.

Hence,

,

and let solve ,  then

.

6. Concluding Remarks

In this paper, first, we show the existence of the environment-dependent optimal (s, S) policy by analyz-
ing finite-horizon periodic-review inventory model where the demand distribution depends on a Markov
environment process. We further show that the solution for the finite-horizon problem converges to that
of the infinite-horizon problem.

We discuss the limitation of our model as well as possible extensions.

Nonstationary transition probability: In this paper, the probability of environment changing is
decreasing in time (periods), since we assume that the environment is Markov chain. But, there is a case
that it is increasing in time, like the obsolescence of products. To solve the contradiction, we must intro-
duce a nonstastionary transition probability.

Another policy: In our model, we consider the optimal policy that let the order-up-to point be the
decision variable. So, we next time consider the optimal policy that let the order quantity, the reorder-
point, and the order intervals be the decision variable. Thereby, we decide the real optimal policy by
comparing them.

Endogenous factors: In this paper, we analyze the inventory model that depends on the exogenous
factors. So, we present the inventory model that depends on the endogenous factors where the demand be
influenced by the order quantity for example.

Gi y( ) ciy Li y( ) α P i j( , ) Vj y z–( ) Ai z( )d
0

∞

∫
j E∈
∑+ +=

Vi x( ) V i
n

n ∞→
lim x( )=

Gi y( ) Gi
n

n ∞→
lim y( )=

G'i y( ) 0=
G'i y( ) 0={ }

G'i y( ) G'i
n

n ∞→
lim y( )=

Si Si
n

n ∞→
lim=

Ki Gi y( )+ Gi Si( )=

si si
n

n ∞→
lim=
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Another uncertain element: We will introduce to our model the unreliable suppliers or the uncer-
tain leadtime, since these are depend on the environment.

Production and distribution: Recently, like KANBAN of TOYOTA, zero-inventory policy
becomes main topic. So, hereafter, we focus on the inventory management to minimize the cost in the
system combined with production or distribution.
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