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Abstract
This paper presents theoretical conditions, under which an option holder does not
exercise a Bermudan swaption. We can utilize the conditions for making profitable
exercise strategies. The conditions are derived by optimality equations under varying

forward neutral probabilities.
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1 Introduction

Exotic interest rate derivatives are flexible financial instruments which satisfy demands
for hedging interest rate risk in a financial market. One of the most traded exotic interest
rate derivatives is a Bermudan swaption. The Bermudan swaption is an option, which at
each date in a schedule of exercise dates gives the holder the right to enter an interest
swap, provided that this right has not been exercised at any previous time in the schedule.
Because of its usefulness as hedges for callable bonds, the Bermudan swaption is probably
the most liquid interest rate instrument with a built-in early exercise feature. Its trade
volume has increased for recent years in the market.

There are many papers for pricing the Bermudan swaption because of its popularity
in the market. The pricing method used in most papers is a Monte Carlo simulation.
Improved Monte Carlo methods for pricing the Bermudan swaption have been proposed
by many researchers like Longstaff and Schwartz (1998) and Andersen (1999). Broadie
and Glasserman (1997a, 1997b) developed the stochastic mesh method. Carr and Yang
(1997) developed a method based on the stratification technique. But there is no re-
search discussing Bermudan swaption’s properties which can be utilized for profitable
exercise strategies. In this paper we derive theoretical conditions, under which the option
holder does not exercise the Bermudan swaption. The conditions are derived by optimality
equations under varying forward neutral probabilities, which have not been used in past
researches. We can utilize this property for making profitable exercise strategies.

The paper is organized as follows. In Section 2, we introduce various notations of
interest rates. In Section 3 we derive theoretical conditions, under which the option holder
does not exercise the Bermudan swaption at the terminal period. In Section 4 we derive
theoretical conditions, under which the option holder does not exercise the Bermudan
swaption at previous periods. Section 5 concludes the paper.
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2 Notations of Interest Rates

Let D(t,T) 0 <t < T < T* be the time ¢ price of the discount bond (or zero-coupon
bond) with maturity T, in brief T-bond, which pays 1-unit of money at the maturity T
(where D(T,T) =1 for any T € T*). For N € Z, let

0<Toy<Ti< - <Ti<Tig< - <Ty1<Tn<T" (1)

be the sequence of setting times and payment times of floating interest rates, that is, for
i=20,---,N — 1, the floating interest rate which covers time interval (T}, T;11], is set at
time 7; and paid at time T;,,. For convenience, we let

Tis1— T, =06 (=constant e Ry ), i=0,---,N—1. (2)
For i = 0,--- ,N — 1, we define the simple (or simple compounding based) interest rate
which covers time interval (T}, T;,1] by
1 1
Lp(T;) == —— — 1. 3
20) = { 5o 1) 3

This amount is set at time T;, paid at time T;;1, and is conventionally called as a spot
LIBOR (London Inter-Bank Offer Rate). For i =0,--- N — 1,

is the simple (or simple compounding based) interest rate prevailing at time ¢ (€ [0,T;])
which covers time interval (T}, T;,1], and is called as a forward LIBOR.

An interest rate swap is a contract where two parties agree to exchange a set of floating
interest rate, LIBOR, payments for a set of fixed interest rate payments. In the market,
swaps are not quoted as prices for different fixed rates K, but only the fixed rate K is
quoted for each swap such that the present value of the swap is equal to zero. This rate,
called the par swap rate S(t) at ¢, with the payments from T to T,, is calculated as

_ D(t.Ty) - D(t,T,) )
S T A ®)

3 Conditions for Non Early Exercise of the Bermudan Swaption at t = T2

In this section we derive theoretical conditions, under which the option holder does not
exercise the Bermudan swaption at the terminal period, Tv_s.

Proposition 3.1. The holder of the Bermudan swaption does not exercise the Bermudan
swaption at t = Ty_o under the conditions

n—1
1
S(Ty-2) < Ew 0)Lnip—1(Tn-2),l=1,2; 6
(T ) 1+ 0Lyy—2(Tn-2) o k(0 Lo (T-s) (6)
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+1 n—1

1
S(Tn-2) < g T+ 0l s (T d) ;'WN-&-k(O)LN-ﬁ-k—I(TN—Q),Z =3,4,---,n. (7)

+s5—3
Proof. The value of the Bermudan swaption at the terminal period, Ty_1, is

n—1

W(S(Tx-1)) = O[S(Tw-1) = K]+ > D(Tw1, Tnys).
k=0

The optimality equation at Ty _» is

-1

W(S(Ty-2)) = max{3S(Tv—2) ~ K]+ >_ D(Tw-2, Twip-1),

3

k=0
D(Ty—o,T)E™ [%‘S(Tmﬂ} }
= maX{é[S(TN_z) - Kl; § D(Tn-2, Tny1r-1),
k=0
D(Ts. Tu)E™ [5[S(TN_1) - Ig 2;};;,3_:(; f)(TN_l, Tir) s} (9)

The condition, under which the option holder does not exercises the Bermudan swap-
tion at Tiy_o, is

n—1

S[S(Tw—2) = K14 > D(Tn—2, Trvyk1)
k=0

O[S(Tn-1) = K]y Spzg D(Tn—1, T 1x)

D(Ty—z, Ty E™ k=0 ’ )ST_ .

< ( N-2, N) |: D(TNfl,TN) ( N 2):|}
Using an approximation,

n—1

S(Ty-1) = Y wni(0) Lvsr—1(Tr-1), (11)
k=0
where
D(t,T;)
wi(t) T x~n-1p, o
k=0 D(tv T‘Z-HC)
we have the first term of the summation on the right hand side of (10), A, as

A= DTy, Tw) E™ [3[8 (T 1) — K] S(T )]

~ D(TN—27 TN)ETN [5[2 wN+k:(0)LN+k:—1(TN—1) — K]_;,_‘S(TN_Q)}
k=0

> 6D(TN—27TN)[Z wy 41 (0)E™ [LN+1¢71(TN71)
=0

S(Txo)| = Kli. (13)
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We evaluate the expectation terms of the equation (13). The first term of the summation
is evaluated as

E™ [LNA(TNA)

S(TN,Q)} = Ly_1(Tn—s). (14)

Next we evaluate the second term of the summation, BT~ [LN(TN_l)‘S(TN_Q)} . We con-

sider the payoff Ly (Tn—1) given at Tyy. We evaluate the payoff under each of the forward
neutral probability measure of PV and P™V+1. We define P as the evaluated value at T _s
corresponding to the payoff.

P Ln(Tn-1)
- —ETN | (T 1
D(Ty—s, Ty) [D(TN,TN)’S( N 2)} (15)
P Ln(Tn-1)
- —FTva | = | §(Ty_ 16
D(Ty-2,Tn1) [D(TN7TN+1) (I 2)} (16)
So we have
D(Ty-2,Tn1) Ln(Tn-1)
E™ | Ln(Tn- Tnoo)| = =L ETN0 | 7 _1G(Ty_ ). 1
[ TS| = B ™ e T 9 1
Utilizing the facts that
1
D(Ty, T - 1
and the function
f(z) =21 + éx) (19)

is convex in z, we evaluate the expectation term in the equation (17) as

Ln(Tn-1)
TN +1 — TN+1
g [T s ] = 57 [t ot
> Ly(Ty—2)(14+0Ln(Tn-2))- (20)
Hence we have the relationship
BT [LN(TN_I)‘S(TN_Q)} > Liy(Ty-s). (21)

Next we evaluate the third term of the summation, ET {LNH(TN,I)’S(TN,Q)}, in the
same way. We consider the payoff Ly, 1(Tn-1) at Ty. We evaluate the payoff under each
of the forward neutral probability measure of P~ and P7¥+1. We define Q as the evaluated
value at Ty _» corresponding to the payoff.

Q oy [Evia(Tv-1)
D(Ty_s,Ty) E [ D(Ty,Ty) S(TN‘2>] (22)
Q Tt Ly 1(TN—1)
D(Ty—2, Tns1) E [D(;MTNH) S (TN*Q)} (23)
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So we have

E™ [LNH (Tn-1)

_ D<TN—2’TN+1)ETN+1 Lyy1(Tn-1)
D(TN—2,TN) D(Tn,TN+1)

S(TH)}
S(TN_Q)} . (24)

Assuming that the following Brownian motions are uncorrelated

AW (1AW T (1) =0, %)
where
dLN+1 (t) = oNi1 (t)dWTN+2 (t)7 te T* (26)
Ly (t)
An(t) _ , yawma(y, teT, 1)
Ly (t)

we have the expectation term in (24) as
Ly (Ty-1)
D(TN7 TN+1)
ETvn [1 v 6LN(TN)‘S(TN,2)} ETva {LNH(TN,l)

ETN+1 [

S(TN_Q)}

S(Tw-2)] (28)

We evaluate the term ETn+1 |:LN+1(TN_1)‘S(TN_2):| in (28). We consider the payoff

Lyi1(Ty-1) at Tyy1. We evaluate the payoff under each of the forward neutral prob-
ability measure of PT¥*! and P™v+2, We define R as the evaluated value at Thx_s.

R Lnyi(Ty-1)
—_ pTva [ 2AUNU g 29
D(Tn-2,Tn+1) [D(TN+17TN+1) (I 2)} (29)
R Lnii(Ty-1)
— _ pTvee| NN g 30
D(Tx—2, Tr+2) [D(TN+17TN+2>‘ (T 2” (30)

So we have

TN+ [LN-H (Tn-1) ‘S(TN—Q)}

METN+Z [M‘S(TN_Q)] . (31)
D(Tx—2,Tn1) D(Tn41, Tiv+2)

In the same way as (20), we have the expectation term in (31) as

e [_Lve(Tv-1) ; ‘S(TN_Q)] > L1 (Twv—2)(1 + L1 (Tiv—s)). (32)

D(TN+17 TN+2

Hence we evaluate the third term of the summation as

E™ [LN+1(TN—1)’S(TN—2)} > Ly (Tn-2). (33)
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In the same way we have the relations
E™ LN+k—1(TN—1)’S(TN—2)} > Lnip—1(Tn—2), k=1,2,--+ 'n—1. (34)

Then A has the following relation.

n—1

A > 6D (T2, Tw) [ wnis(0) Lavyi1(Tw—) — K]y (35)

k=0

Comparing the first term of the left side on the equation (10) and the right side of equation
(35), we have

D(Ty_5,Ty)

[S(Tn-2) — K]+ < DTy 2. Tv 1) ZwN+k 0)Lntk—1(Tn-2) — K]+ (36)
n—1

RHSo0f(36) > [1+5LN11(TN 52 wnar(0)Lvaa(Tv-2) = K (37)
- k=0

Hence one of the sufficient conditions for non early exercise of the Bermudan swaption at
t = Ty_o derived from the comparison of the first terms is

n—1
1
S(Tn—2) < T 3L (T ) ;UJNH« 0)Lnyr—1(Tn—2). (38)

We have the second term of the summation on the right hand side of (10), B, as

D(Tn_1,Tn:1)8[S(Tn-1) — K
B = D1y ) [ZR T ]+;S<TN_2>]
1 n—1

_ T
~ 5D(TN—27TN)E N[m ZwN-‘rk )LN+k 1(TN 1 ‘S Ty- 2)]

n—1

LN+k71(TN71)

> 85D(Tn_s, T ETv | 225 2 18Ty o) | — K]
> 8D(Ths T w0 E™ [P S| - 1, (39)

We evaluate the expectation terms of the equation (39). Under the following assumption
that all Brownian motions are uncorrelated each other

AWTi(t)ydwTi(t) =0, i#j, (40)
we have
B [ Al -o)
= " gy -] B [T s -] ()

Because the function
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is convex in x for z > 0, we have

1)
] R S PN (S E "

Because the function 14 6Ly (Ty—1) N2l =T SLn(Tn—2)
Utilizing (43) and (34) we derive the relation 42)

. . 1
1sconvex1nxforxj§70{{ue_h% T N E™ | Lvar1 (T S(Th_
ehate o | (T2) | B [ Lavsacs (T )| S (T 2)|

Lyig-1(Tn=2) (%gf
1+ (SLN(TN,Q) ’

Utilizing (43) and (34) we derive the relation

Hence B has the following relation.

- (44)

Lyyr—1(Tn_2)
Hence B has the %l%vggéjrwﬁﬁﬁb}q{v)[g wN’Lk(O)l +0Ln(Tn—2) Kl (45)

Comparing the second terms of the left side on the equation (10) and the right sid446)

equation (45), we have
Comparing the second terms of the left side on the equation (10) and the right side of equation

\% D(Ty_2,Ty) o Lyyr—1(Tn-2
46

Hence one of the sufficient conditions for non early exercise of the Bermudan swaption at
Hencp,one obthe gufifisienheonditionsifon nansparle exsrcisa pldhe Bermudan swaption at £ = Ty
2 derived from the comparison of the second terms is

S(Tn-2) < m ; WN+k(0) Lnyr—1(Tn—2). (47)

We have the third term of the summation on the right hand side of (10), C, as

D(Tx—1,Tn12)8[S(Tx_1) — K
R )
~ 0D(Tx_s, T, )ETN[ L
N L4 0Ly (Tv1) (1 + 0Ly sa (Tiv1))

n—1
ZWN+k )LN+k 1(TN 1 ‘S Tn- 2)}
k=0

n—1
> 0D(Tn 2, Tw)[D>_ wn-4(0)

k=0

Lnir—1(Tn-1)
ETN[ ’ST_}—K . 18
(L4 6Ly (Tv-1)) (1 + 6Ln11(Tn-1)) (L) e “8)
In the same way we evaluate the expectation terms of the equation (48) under the as-
sumption all Brownian motions are uncorrelated each other.

Lyyr—1(Tn-1)
(1+ 0Ly (Tw—1)) (1 + 0 Ln11(Tn—1))

Lnix1(Tn—2)
= U+ 0Ln(Ty-2)(1 + i (T ) o

‘S(TN,Q)}

ET~ [
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Hence C has the following relation.

n—1

C > 0D(Ty—2,Tw)[>_ wn+k(0)

k=0

Lnyr—1(Tn—2)
(14+0Ln(Tn-2))(1 + 6Lni1(Tn-2))

- Kl (50)

Comparing the third terms of the left side on the equation (10) and the right side of
equation (50), we have

D(TN,%TN)
[S(Tn—2) — K]1 < DTy 2. Trrd)
> wnaal0) Laveis(Ths) K], (51

(14+0Ly(Ty-2))(1+ dLn1(Tn-2))

D(Tn—2,TN)
D(Tn—2,TN41)
Bermudan swaption at ¢ = Ty_s derived from the comparison of the third terms is

Because > 1 one of the sufficient conditions for non early exercise of the

4 n—1

1
<
S(Ty-2) < g T+ 0Lw oI a) ; WN-+1(0) Ly k-1 (Tv—2). (52)

In the same way we can derive that the sufficient conditions to satisfy this proposition are
summarized as

n—1
S(Tn- 0)Lyip—1(Tn-2),l =1,2; 53
( N 2) 1+5LN+Z 2 TN 2 ;U}N+k N+k 1( N 2)7 y 4 ( )
+1 n—1

1
S(Tv—) <] 7500 > wnik(0)Inpr1(Ty2), 1= 3,4, n. (54)
s=3 =

+s—3 (TN—Z) k=0

O

4 Conditions for Non Early Exercise of the Bermudan Swaption at ¢ = T;

In this section we derive theoretical conditions, under which the option holder does not
exercise the Bermudan swaption at previous periods, T; for ¢ =0,--- | N — 1.

Proposition 4.1. The holder of the Bermudan swaption does not exercise the option at
t="1T, fori=20,--- N —1 under the conditions

S(T;) < e 5Lz+l , sz+k+2 VLivk(Ti), 1 =1,2; (55)
+1 n—1
S(T,) < H 1+ 5Lz+s 1 l wakﬁ z+k+1(Tz‘)al =3,4,---,n. (56)
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Proof. At t = Ty_5 from the result of Proposition 1 we prove that we do not exercise the
option under the conditions (53) and (54). At t = T;,; we suppose that we do not exercise
the option under the conditions

S(T; i i ) =12 57
(Ti1) < 1+ 6Lz+l+l ) Zw +k+3(0) Ligrr2(Titn), (57)
I+1
S(Tiy1) < i i i 1=3,4,---,n, 58
(Ti+1) H 1+ 6Lz+s 1) ZU} +h43(0) Litrr2(Titn), (58)
that is
[ W(S(T;
W(S(Tis1)) = D(Tiyr, Trps) BT {#‘S Ti1) }
D(Ti12,Tiys)
n—1
> 0[S(Tit1) *K]JrZD(TiH,THkH)- (59)
k=0
At t = T; we would like to show that under the conditions
S(Th) < T 5Lz+l sz+k+2 JLivk1(T),1 = 1,2; (60)
I+1
S(,I’l) < H 1+ (5L1+9 1 sz+k+2 Z+k+1( ) l= 3747 e, N, (61)
we do not exercise the option by the 1nduct10n, that is
n—1
SS(T) = K1, S DT, T i)
k=0
W(S(T;
< D(T, Tiyo) M+ [ —~ ‘S } (62)
D( i+1 z+2

From the hypothesis, (59), substituting RHS of (59) for the RHS of (62) we obtain

Tin1) = K] Yoo D(Tist, Timeo) ‘S(Tv)}
D(ﬂ+l7 ﬂ+2) '

RHSof(62) > D(T;, Tyy2) ET+2 {5[5(

n—1
= D(T;, Tyy2) B2 {5[2 Witkt2(0) Ligrr1 (Tign) — K¢
5=0

n—1
D(Tis1, Tirm
Zm:O ( i+1 + +2 ‘S :| (63)
D(E+1aﬂ+2

Comparing the first terms of RHS of (63) and LHS of (62), we obtain one of the non early
exercise conditions as

[S(T)) = K]y <

D(T, Tito) pia [ S, o
BT [ 2 w0 Liswin(Ti) = Ko S(T)]. (64)
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Utilizing the following relation

RHSof(64)

%

n—1
; L (T)|S(T)] - K
1+5L1,+1 ;UH—HZ [ +k+1( +1) ( ) ]+
n—1

Wit12(0) Liri1 (Th) — K4, (65)

k=0

1

> [
B [1 + 0L (T3)
(64) is satisfied under the condition (60). Comparing the second terms of RHS of (63) and
LHS of (62), we obtain one of the non early exercise conditions as
D K3 b /L -«
[S(T}) — K], < BT+ [ 1 Tiva) Z With+2(0) Livks1 (Tig1) — ‘S } (66)

z+1> Z+2

Utilizing the following relation

n—1
1 Tit2 ) ! N —
RHSOf(66) Z [m%wwﬂwﬂ(o)E |:Lz+k+1(ﬂ+1) S(,Tz):| K]+
n—1
> 2 2 /I;, _K ) 67
= [1+5LZ+2 Tir) ;;MW Livkar () = Kl (67

(66) is satisfied under the condition (60). Comparing the I-th(l > 3) terms of RHS of (63)
and LHS of (62), we obtain the one of the non early exercise conditions as

[S(T7) — K]+ <
D(T;, Tis2) 1, [P (Tt Tivii)
LU e | Wiks2(0) ik (Tin) = K14 [S(T)). (68
D(T;, T11) D(Tis1,Tiss) ,; +es2(0)Lipna (L) (©8)
Utilizing the following relation
-3 +1 1
RHS0f(68) = J](1+0Lituea(T)E™2|

Z Witht2(0) Ligria (Tisa) — Ky

l+1

> [H i 5L2+S+2 sz+k+2 VLivk1(T;) — K4, (69)

(69) is satisfied under the condition (61). Then we prove that the holder of the Bermudan
swaption does not exercise the option at ¢ = T; under the conditions

S(Th) < i 6Lz+l Zw7+k+2 Vit (Ti), 1 = 1,2; (70)

I+1
S(T) < H T 5L1+5 i sz+k+2 Wirkar(T), 1= 3,4,-- ,n. (71)
O
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5 Conclusion

In this paper we propose the conditions for non early exercise of the Bermudan swaption.
We derive theoretical conditions, under which the option holder does not exercise the
Bermudan swaption. The conditions are derived by optimality equations under varying
forward neutral probabilities. We can utilize this property for making profitable exercise
strategies.
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