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Abstract

In Tamba(2007) I analyzed temporal learning effects of the asset
allocation decision of an investor, who has a long investment horizon.
The investor has an uncertainty about the mean return of the risky
stock (the state variable). In this paper, I discuss the result derived
in Tamba(2007) in detail. I verify propriety of a hedge portfolio in
the uncertainty. I prove that the partial differential of the investor’s
expected utility of a bequest in terms of a current assessment of the
coefficient is positive in a discrete time approximate model.
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1 Introduction

In Tamba(2007), I considered an asset allocation problem with an uncer-
tainty of a state variable. I analyzed the simple case when the investment
opportunity set is constant in time, and the variance of the stock return
is known in advance but the expected stock return (the state variable) is
uncertain. Brennan (1998) used the same setting and shows the relationship
between the investment fraction of the stock and the remaining period by
using numerical examples. But I analytically examined the temporal change
of the fraction solving the stochastic differential equation of the expected
state variables. In this way, I could see the forward looking change of the
investment fraction on the stock. I considered the simple model that the
investment opportunity set was constant, and the expected return of the
stock was unknown in the absence of the estimated risk. By considering
the simple case, the temporal change of the investment fraction could be
obtained theoretically.
In this paper, I discuss the result derived in Tamba(2007). In Tamba(2007)

I derived the result under a plausible conjecture that a partial differential
of an expected utility in terms of an expectation of a trend of a stock price
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is positive. But I did not discuss propriety of the conjecture. In this paper
I verify propriety of the conjecture in a discrete—time approximate model.

The paper is organized as follows. In Section 2, I overview the result in
the continuous model. In Section 3, I discuss propriety of the conjecture in
a discrete-time approximate model. Section 4 concludes the paper.

2 Overview of the Result in Continuous-Time Model

In Tamba(2007), I considered an investor with a long horizon who maximizes
the expected bequest at the end of the horizon, T' (> 0). The investor can
trade continuously in a riskless asset or a single risky stock. The real return
on the riskfree asset is assumed to be constant, . The stock price process
(S(t);t € [0,T]) is assumed to follow a stochastic differential equation with
a drift affected by an unobservable state variable process (u(t);t € [0,7):

dsS(t
ds(t) = p(t)dt + odBy(t), te€0,T], (1)
S5(t)
where S(0) is a constant and o (> 0)is a constant diffusion parameter, and
(u(t)) follows a stochastic differential equation:

du(t) = ap(t)dt + bdBs(t), te[0,T], (2)

where p©(0) is a random variable, a and b are constant parameters, and
((B1(t), B2(t));t € [0,T]) is a two dimensional standard Brownian motion.
All of uncertainties in the economy are assumed to be generated by p(0)
and ((B1(t), B2(t)) defined on a complete probability space (2, F,P).
Let W (t) denote the investor’s wealth at time ¢ € [0,7]. The stochastic
process (W (t);t € [0,T7]) is given by:
dS(t)

AW (D) = a(W (1) g+ (1 = al)W () ds, ¢ 0.T)

The investor’s indirect utility function is characterized on his wealth level

W (t), his current assessment of the coefficient m(t¢), and time ¢. Therefore,
the investor’s expected utility of the bequest under an optimal policy is:

JW(t),m(t),t) = max E[UW(),T)|F5®)], te€0,T] (3)

(a(u);t<u<T)

with a terminal condition J(W(T),m(T),T) = U(W(T),T).
I assume that the bequest function U(W (T'),T') displays Constant Rel-
ative Risk Aversion (CRRA):

1-6
vow(r), )= 0 (W

where 0 > 0 is the degree of relative risk aversion. Finally, I derived the
following proposition in Tamba(2007).

— 112 —



Learning Effects with a Discrete-Time Approximate Model

Proposition 1. The optimal investment fraction on the stock, a(t) at time
t€[0,7] can be represented as:

m(t) —r+ v(t)—(p@“zgzii?;g)

at) = 552 , tel0,T). (5)

Under the conjecture that
In(W(t),m(t),t) >0, tel0,T] (6)
and the case of § > 1, I have
D,,(m(t),t) <0, tel0,T],

because

T (W (1), m(t), 1) = Wl(%)}_d@m(m(t),t) S0, telo.T]

Further, I have
®(m(t),t) >0, tel0,T]

because

W(t)lfé

TOV (D), m(t), 1) = —5 2

O(m(t),t) <0, tel0,T]. (7)

I (W (t),m(t),t) > 0, t € [0,T] is a plausible conjecture. Hence, under
this conjecture, I have

O (m(t), 1)

m. < € [0, 7).

I can consider that ~(t)®,,(m(t),t)/®(m(t),t) is the hedge for the uncer-
tainty of p.

3 A Discrete-Time Approximate Model

In this paper, I verify whether the conjecture,
(W), m(t),t) >0, ¢€[0,T]

is appropriate. In order to do this, I consider an approximate model in a
discrete—time setting. When I can observe the stock price process, (S(£);0 <
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t < T) with a time interval A > 0. Since (S(¢);0 < ¢t < T') follows the

geometric Brownian motion,

o S(n+1)A) 1
T
n:1’2’... ’Z’ (8)

where T'/A is assumed to be an integer, for convenience. Hence,
1 T
X,?NN((N_gUz)A’UQA)’ n=12--,%. (9)

Let’s consider a simple case first. Assume that a random variable X
has a normal distribution N(C,v) and that the mean C is also a random
variable which has a normal prior distribution N(M,,I',).

Hence, the probability density functions of X and C' are given by

1 (x—c)?
P(X € dz|C =¢) = Norhid G dz, z€R; (10)
]. - Mn 2
P(C S dC) = W exp (—%) dC, cc R, (11)

respectively. So, by the Bayes formula, the posterior probability density
function of C' given an observation {X = x} (z € R) becomes:

P(C € de|X = z)dz o« P(C € de)P(X € dz|C = ¢)
x exp <_l { (e=M)” | (2= }) de - de,

2 T, v
ceR. (12)
Since
(c—M,)*  (z—¢)
T, v
1
1
= 7 {(v+Tn)* = 2(vM, + Tpz)c+ vM] + Tpz®}
n¥
1 oM, +T',x 2
S T _ U T i et
pa 4 (o= )
M, +I'yz)?
(’Uv—i-;rw) +UM3 +Pn$2}, (13)
I have
1 oM, + T,z 2
P(C € de|X = x) x exp T <C—W> de, ceR.
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(14)

In order to apply the above result to our model in which the stock price
follows a (discrete-time) geometric Brownian motion, I set

1
c = <u - 502) A; (15)

v = oA (16)
Let me define the conditional expectation and variance by

M, = E[C|F]]

_ E[(u— %H) A‘}f]

- (mn—%<72>A, n:(),l,-'-,%; (17)
L, = E[(C—M,)*F;]
{3 (bl
2 2
= E[(p—mn)?|F;] A7
= AZ n:(),l,---,%, (18)

where, for n =0,1,--- | T/A,
Fro= 0(5(0),5(4), -, 5(nd));

n

Tn = E(M_mn)Q‘ff}

Then, according to the previous results, they can be updated by the following

formulas:

oM, +T',x T
n+1 v+ Fn ) n y Ly ) A ) ( )
r,v T
T — =0,1,---,——1. 20
n+1 v+ Fn7 n ) Ly ) A ( )
From Egs. (17) and (18), Eq. (19) becomes
1
» a2 A <mn — 502> A +7nA2XnA
_Z A = 21
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Substituting (8) to (21), I have

1
(mn+1 - 50'2> A

02A<mn - %ﬁ)A + %Nigi i(jZQM o(Bi((n+1)A) — Bl(nA))}

As a result, I can get the following stochastic difference equation:

In
PRy {(p=mn)A+o{Bi((n+1)A) = Bi(nA)}}. (23)
Substituting Egs. (16) and (18) to Eq. (20), I have

'Vnaz

(22)

Mp41—Mp =

= —-—. 24
Tl = A (24)
Hence I get the following (deterministic) difference:
2
va A
—yy, = 25
Tn+1 = Tn o2 + A (25)

From (24), (25), I can conclude that this discrete-time model closely ap-
proximates the continuous-time model when A is sufficiently small.

The investor optimizes his expected bequest at the end of the time hori-
zon, T. Let V(W,,, m,,n) be the optimal value function for this discrete-
time model when the process starts from the state (W, my,n). Then, the
optimality equation is:

T
Mg, M) = E ; . 1) | FS —0.1.+-.  ——
V(Wy, mp,n) Iﬁ?ﬁf [V(W+1,m 11,1+ )|.7:n], n=0,1, "
(26)
with a terminal condition V(Wx,my, N) = U(Wy,T) for N :=T/A, where
A C R is a constraint set on stock position.

1

)

Proposition 2. m, 1 increases in m, and XnA.

Proof. From (21), this is clearly true. O
Proposition 3. If A C Ry :=[0,00), W, 11 increases in X5

Proof. Note that

Whit = f(Wa,an, X2)
= a, W, exp (Xf) + (1 —an)Wyp(l+7)
— anwn% (1= an)Wi(147) (27)

From the assumption, a,, > 0, I can conclude that W, increases in XnA.
a
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Proposition 4. V(W,, my,n) increases in W,.
Proof. Suppose that W,, < W,. The investor who has W, can spend W,
to attain V(W,,, m,,n) and invest the remaining W, — W,, for the riskless

bond by which the investor can obtain the additional utility for sure. Hence
VW, mp,n) < V(W,, mp,n). O

Proposition 5. If A C R, P-a.s., then V(W,, my,n) increases in my,.

Proof. The optimality equation can be rewritten as

V(Wh, my, n)

= Iéleai(E [V(Wn+17mn+lan+ 1) |f’r§]

= max [V (f(Wna «, x)u h(mm'}/na z,n+ 1)7 n—+ 1)p(x’mn77m n)d:c, (28)

acA
where
fWh,a,x) = aWpe® + (1 — )W, (1+71);
1 1
h(mp, Yo, z,n+1) = m |:O'2mn+’yn:6+§’yn02A:|;
1 (x —my)?
ns In) = —_—— . 29
plalma ) = e (L) (29)

It is noted that, when -, is fixed and m,, < m,, p.d.f. p(:|m,, v, n) is
greater than p.d.f. p(:|my,vn,n) in the sense of the first order stochastic
dominance (usual stochastic order). From Proposition 4, W, 11 = f(W,, a, x)
increases in x. From the Propositions 3, 4, and 5, it suffices to show that
V(Whyt1, Mpt1,n + 1) increases in my,.

By induction in the case of n’ = N := T/A,

V(Wn,mn,N)=UWn,T) (30)

is increasing in Wy
When n’ = n+ 1, suppose that V(W 11, mp11,n+ 1) increases in my, 1.
Then, when n’ = n,

V(Wy,mp,n) = maf‘c V (f(Wy,a,z), h(mp, Yo, z,n+ 1), n+ 1) p(x|my, v, n)da.
aE
(31)

Because my,+1 = h(my, yn, x,n+ 1) increases in my,, V(W,,, my, n) increases
in m,,. Since this discrete-time model closely approximates the continuous-

time model, I conclude that the conjecture, J,,,(W(t), m(t),t) > 0, t €
[0,T], is appropriate. O
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4 Conclusion

In Tamba(2007), I analyzed the case that the investment opportunity set was
unknown but constant. Especially, I considered the case that the volatility
of the stock return was known, but the expected return of the stock was
unknown. I theoretically analyzed the temporal change of the fraction of
investment on the risky asset. I concluded that he learning process gave two
effects on the investment fraction. One was improving the assessment of the
state variable. The other was the reduction of the hedge demand against
the uncertainty of the state variable learning about the state variable. 1
derived the result under a plausible conjecture that a partial differential of
an expected utility in terms of an expectation of a trend of a stock price was
positive.

In this paper, I discuss the result derived in Tamba(2007). I verify
propriety of the conjecture in a discrete-time approximate model. I confirm
propriety of the important conjecture in the discussion of Tamba(2007).
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