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Abstract

We consider a single product, two-stage supply chain inventory model with the upstream
warehouse and the downstream retailer which is observed periodically. The demand for a
product is random. The optimal supply chain inventory policy to minimize the total discounted
expected cost is derived via dynamic programming. The problem is analyzed in single, two,
multiple and infinite periods. Under certain conditions, we show that the problem for the
retailer is a Newsboy-type problem and that the optimal policy is characterized by a single
critical number for the initial supply chain inventory level. We further show that in all cases, the
optimal policy for the warehouse is a base-stock policy where the optimal base-stock level
depends on the initial supply chain inventory level. Numerical analysis is examined to gain
insight into the problem.

Keywords : inventory, dynamic programming, periodic review models, supply chain

management

1 Introduction

The term supply chain refers to a system consisting of material suppliers, production facilities,
distribution services, and customers who are all linked together via the downstream feedback
flow of materials (deliveries) and the upstream feedback flow of orders (Stevens 1989; Disney
and Towill 2003). In many supply chains, the variance of orders may be considerably larger than
the variance of sales, and this distortion tends to increase as one moves upstream, this is so-
called “Bullwhip Effect” The Bullwhip phenomenon has recognized in many diverse markets.
Procter & Gamble found that the diaper orders issued by the distributors have a degree of
variability that cannot be explained by consumer demand fluctuations (Lee, Padamanabhan
and Wang 1997a). This phenomenon was extensively analyzed by Lee, Padamanabhan and
Wang (1997a, b), which have pointed out five fundamental causes, demand signal processing
(information sharing), order batching, rational game, price variations and long lead time. Thus,
the members in a supply chain have been facing such a phenomenon that causes the increasing

of the average inventory and the total expected cost. In order to avoid the bullwhip effect, we
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should eliminate or decrease those causes.

In traditional supply chain, the downstream makes stock level decision and the upstream
only observes the downstream's order. But, with the development of information technology
(IT) such as Internet, point-of-sales (POS), and electronic data interchange (EDI), all stages of
the supply chain have been able to share demand and inventory data quickly and inexpensively.
So, recently, there have been some new approaches that transfer the stock level decision to the

upstream, such as Click and Mortar (CAM), Drop-shipping (DS), and Vendor managed
inventory (VMD).

There are numerous works published in the area of SCM. We will only discuss literatures
that relate closely to our paper. There is an extensive literature on serial inventory system.
Clark and Scarf[8] consider a multi-echelon inventory problem. They show that echelon base-
stock policies are optimal in a periodic review, finite-horizon setting. Federgruen and Zipkin[9]
generalyze the same results to periodic review, infinite-horizon models. Chen and Zheng[6]
consider supply chain with random demand, constant lead time, and setup cost at all stages.
They derive a lower bound over all feasible policies under centralized control. Recently,
Chen[5] develop a serial inventory system with N stages. With centralized demand information,
he shows that the optimal echelon reorder points can be determined sequentially. Axsater[1]
derives complete probability distributions for the retailer inventory level in a two-echelon
distribution inventory system. Cetinkaya and Lee[4] present a model for coordination of
inventory and transportation decisions in VMI systems. They approximate the exact model to
obtain a solution to the considered problem. It is necessary to understand concept of
environment dependent optimal inventory policy in periodic review model. It will be find in the

appendix in this paper.

In this paper, we introduce a two-stage, supply chain inventory model with the upstream
warehouse and the downstream retailer. At the beginning of a period, a retailer provides
demand information and inventory level to a warehouse. Then, the warehouse decides the
replenishment quantity for retailer and the order quantity to minimize the total supply chain
discounted expected cost. We can see such situation in the real-life, e.g., the soft drink firms
that replenish their product for the vending machines, many electronics/computer industry, and

the garment industry, etc.

The purpose of this paper is to show that under certain conditions, the optimal policy for
the retailer is characterized by a single critical number for the initial supply chain inventory
level at each period, which is obtained by solving a myopic cost function. We further show that
the optimal policy for the warehouse is a base-stock policy where the optimal base-stock level
depends on the initial supply chain inventory level at each period. In this paper, in particular,

we focus on the finite-horizon analysis, since it gives us concrete and realistic insight.
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This paper is organized as follows; Section 2 presents the formulation of the general
problem as a dynamic programming model. Section 3 and 4 provide analyses for the single-
period and the multi-period problems, respectively. Numerical examples are presented in

Section 5. The paper concludes with some final remarks in Section 6.

2 Assumption and Notation

This paper studies a two-stage supply chain inventory model with the upstream warehouse
and the downstream retailer as illustrated in Figure 1.
In this section, we introduce notations and basic assumptions used throughout the paper:
n : number of periods remaining in the finite-horizon problem,;
D,, : the random variable which describes the total demand during period n;
A(2)=P{D,, £ z} : the cumulative distribution function of D,;
a(2): the probability density function corresponding to A(z);
A :amean of the demand, i.e., A =ls sz(z):fﬁoo za(2)dz;
W : warehouse;
R : retailer;
xiy . the inventory level at W observed at the beginning of period n;

xf : the inventory level at R observed at the beginning of period n;

xf: the total supply chain inventory level observed at the beginning of period =, i.e.,

=iy + ks
yiy . the order-up-to level at W for period n;
Yk : the order-up-to level at R for period n;
Y% : the total supply chain order-up-to level for period n, i.e., Y%=yl + y&;

cwy: aunit ordering cost at W,
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hw : a unit holding cost at W incurred at the end of period,;
¢p : a unit transportation cost from W to R;

¢} : a unit transportation cost from W to R in period 0;

hg : aunit holding cost at R incurred at the end of period,

pr: aunit shortage cost at R incurred at the end of period;
a: the discount factor per period, 0< « <1;

We assume that A(0)=0, a(-)> 0, that unsatisfied demands are fully backlogged, and that the

transportation lead-time is negligible. Also, we make the following assumptions.
Assumption 1 cy + hy + acp < apr
Assumption 2 cp + hg + hy < acp
Assumption 1 is necessary to motivate ordering. If Assumption 2 does not hold, it is less
expensive to transport all products at W to R. Then, the problem becomes trivial.
Since we do not allow for disposing of any inventory without satisfying demand, the
admissibility condition requires as follows:
Admissibility condition 1 y3 — xp <}, i.e., xfy < x%

Admissibility condition 2 y} < x}

Admissibility condition 3 yiy < xfy — (yg — xB), i.e., yF < xf

warehouse retailer

> Q—»Demand

Figure 1: A two-stage supply chain

Now, let V*(xg, x7) be the minimum total supply chain discount expected cost of operating
for n-period with the initial inventory level xg at R, and the initial supply chain inventory level
a7 under the best ordering/replenishment decision is used at period n through period 1. Then, a

dynamic programming equation (DPE) for the problem can be given by
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VO (zg,z1) =0, (1)

V™" (zg,oT) = min {CD(yR —ar)+yr(hw + cw) — hwyr — cwar + L(yg)
YT 2TT>YR>TR

+a /Oo V" N yr — 2,97 — z)dA(z)}., n>0, (2
0

where yr and yr are the inventory level after the replenishment at R and the supply chain

inventory level after the order is delivered, respectively,

L(yr) = hr /OyR(yR — 2)dA(z) +pr /oo(z —yr)dA(z), n>0

R

is the expected one-period holding and shortage cost function at R. The first and second

derivatives of L(yg) are

L'(yr) = (hg +pr)A(YR) — PR,
L"(yr) = (hg +pr)alyr) > 0.

To simplify our analysis, by using the relation
W"(xgr, 1) = V"(2R, 1) + CDTR, 1 >0,
we change (1) and (2) to following DPE.

W'(xg 1) = char.

VV”(.I‘R7 xT)

Yr2Tr>YR>ZTR

min {f(yR) +yr(hw + cw)

- a/oo W yr — 2,91 — Z)dA(Z)}
0
+ acpA —cwar (3)
where
fyr) = coyr(1 — a) + L(yr) — hwyr (4)
In this paper, we assume that no action is taken in period 0. So, ¢)=0. Thus,
WO(.TJR,.’IJT) =0.

We assume that all parameters and costs are nonnegative, and that all relevant functions

are differentiable.

3 Single-Period Analysis

In this section, we analyze the single-period problem for the model introduced in the last

section. Furthermore, we make an additional assumption, and change (3) to a DPE which is a
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function of the initial supply chain inventory level x7 only. We begin by rewriting (3) as

WYz, zp) = min {yr(hw + cw)}
yr2>xr
+ F(axp,z7)+ acp\ —cwar (5)
where
F = i
(zrozr) = min {f(yr)} (6)

We first investigate the properties of (4) since it plays a central role in the minimization in (5)

and (6). We obtain the first two derivatives as follows:

f'yr) = ep+L'(yr) — hw,
f(yr) = L"(yr) > 0.

It should be noted that L'( ) is increasing,

lim f/(yR) = c¢p(l—a)+hr—hw >0,
YrR—©
yEIPoo f'lyr) = cp(l—a)—pr—hw <O0.

So, there exists a unique y}é such that f'(yg)=0, i.e.,

V= - [P —ep(l )
r hr+pr

y£ is nonnegative and finite because pr+hw — cp(1— « )>0 and pr+hw — cp(1— a )<hp+pg.
Now, we set an additional assumption.

Assumption 3 xp < y£

Then, the optimal policy for period 1 and the expected optimal cost under the optimal policy

are summarized in the following theorem.

Theorem 1 For 1-period problem,

(1) the optimal replenishment policy for R is given by

o {IT (IT<Z/{3)
Yr =

yh  (zr > yh)

where critical number yé is a solution to f'(yr)=0;

(2) obviously, it is optimal not to order at W, i.e.,
yr- = ar;
(3) the optimal cost under this policy is

Wl(xT) = F(x7) + acp\+ hwzr
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where

Pl = { flo7) (or < vh)

f(yR) (xr > yR)
and its first two derivatives are
wWY(zy) = F'(z7)+ hw
_ { F(xr) + hw (@1 < yf)

hw (x> y};)
F”(xT)

_ e (er <yh)
- {omzm;) v oz0

Wlu(l'T)

So, W'(xr) and F(xy) are quasi-convex in oy

Under Assumption 3,notice that (5)and (6)are func-tions of the initial supply chain inventory

level x7 only. Hence, recursively,we can rewrite (3)as

Whar) = min {G"(yr)} + Fler)
+ acph— ewar (7)
where
G"(yr) = yr(hw +cw)
= o [T W - 2iae) ®)

Remark 1 It should be noted that yg has no effect on either yr or the cost-to-go. So, the optimal
replenishment policy for R is a myopic solution which depends only on the initial supply

chain inventory level xy as defined in Theorem 1.

Remark 2 It is not unreal that the initial inventory level xp at R is less than the maximum
inventory level yh at R. Furthermore, the replenishment policy is easy to implement, since it

is obtained by solving a myopic cost function.

In the next section, we show that the optimal ordering policy at W is a base-stock policy where

the optimal base-stock level depends on the initial supply chain inventory level.

4 Multi-Period Analysis

In this section, we analyze the two-, n-, and infinite-period problem for the model introduced in

Section 2.
When n=2, from (7) and (8),
W2(zp) = y;nzigT{GQ(yT)} +F(a1) + acpA — ewar
G*(yr) = yrlhw +cw)+ a/ooo W(yr — 2)dA(z)
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The key results for the two-period problem are contained in

Theorem 2 The optimal ordering policy at W for the two-period model is a base-stock policy
defined by

o _ [ St (xr < 5%)
Yr = { xT (.Z’T > S%) (9)

where S} satisfies (hw + cw)+ a Jo. WY (yr — 2)dA(2)=0 and the optimal cost incurred by this
policy is

GQ(S%) + F(zr) +acpX — cwar (vr < S%)
W(xr) = (10)
GQ(Z‘T) + F(:L’T) +acpA — ecwxr ({L’T > S%)

Moreover, W2(xy) is quasi-convex in xp:

Proof. Let us analyze the objective function G%(y7). We obtain the first two derivatives of

G*(yr) as follows:

G¥(yr) = (hw + ew) + @ /0 Tw V(yp — 2)dA(z)
=1+ a)hw +cw + a/oo f'yr — 2)dA(2)

Yr—Yg

211 =« * 17 -z P
G¥(yr) = [ WY (yr - 2)dA(:)

“a / (he+pr)alyr — 2)dA(2)

Then,
G*'(yr) >0,
lim G¥(yr) = (14 a)hw +cw >0
Yyr—0o0
lim G¥(yr) = hw+cw +acp(l—a)
Yr——00

— pr<0

So, there exists a unique S7 such that G* (y7)=0. It is clear from above results that S7 is the
optimal order-up-to level when x7< S7 and no order should be placed when > S7. This proves
that a base-stock policy defined by y7" in (9) is optimal. Accordingly, the optimal total cost
W2(xp) is found by evaluating G*(yr) at y7 so that

GZ(S%) + F(.’L’T) + acpA\—cwxr (IT < S%)

W2(zr) =
GQ(QST) + F(LET) + acpA\—cw T (lL‘T > S%)
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which leads to (10). Furthermore,

2y  Fllar)—c (o7 < 57)
Wzr) = { G2’(.7:TT) + };V/(-TT) —cw (-T; > Szgr)
211 _ F”(xT) (mT = 82)
w (TT) = { G2//($T) + F”(xT) (xT > S%:) 20

So, W2(zr) is quasi-convex in zp. Q.E.D.

For the n-period problem, the DPE is given by (7) and (8). The key results for the n-period

problem are contained in

Theorem 3 The optimal ordering policy at W for the n-period model is a base-stock policy
defined by
n . < n

p={ 08 (or<op) (1)
rT (.I'T > ST)
where St satisfies (hw + cw)+ a fwa’I’(yT—z)dA(zﬁO and the optimal cost incurred by this
policy is

G"(S}E) + F(axr)\t+acp — ewar (xr < S})

W (zr) = (12)
G"(xr) + F(zp)\+acp — ewar (xr > S%)

Moreover, W"(xr) is quasi-convezx in Ty .

Proof. For the n-period problem, the objective function is given by (8). Aassume that the
following properties hold for the (n—1)-period problem:
(1) G* (yr) is convex and attains its global minimum at S# L.
(@) limy o0 G* Y (yp)=cw + by Yo g @
(3) W* (ap) is given in (12) for n=n—1 and is quasi-convex in xy.
Then, it can be shown inductively that similar properties as in the two-period case also hold for

the n-period problem. Q.E.D.

We develop and solve the infinite-horizon problem. For the infinite-horizon problem, the

DPE which is equivalent to (7) can be written as

W(xr) = y;gha}T{G(yT)} + F(x7) + acpX — ewar (13)
where
Glyr) = yrlhw +cew) + a /OC W (yr — 2)dA(2) (14)

According to Proposition 14 in Bertsekas[2], under the positivity assumption (i.e.,
expected costs per period are nonnegative), we have lim,—c~ W' (x7)=W(xr) and lim,—~«~ G"(yr)
=G(yr). Moreover, there exists a stationary optimal policy. Thus, the optimal cost in infinite-
horizon is characterized by (13) and there exists a stationary policy y7 which minimizes the

infinite-horizon total cost. The key results for the infinite-horizon problem are given in
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Theorem 4 The optimal ordering policy at W for the infinite-horizon model is a stationary

base-stock policy defined by

« | St (xr < S7)
Yr = { TT (.’L‘T > ST) (15)

where St satisfies (hw + cw)+ « I w (yr—2)dA(2)=0 and the optimal cost incurred by this

policy is

Wi ( G(Sr) + F(ar) + acpA —ewar (a1 < S7) "
! i G(zr) + F(ar) + acpA —cwzr (v > St)

Moreover, W(xr) is quasi-convex in xr.

Proof. For the infinite-horizon problem, the objective function is given by (14). Lemma 8-
4 and 8-5 of Heyman and Sobel[10] imply G'(yr)=lim,—~« G'(yr). Then, by using similar

discussions as in the proof for the Theorem 2 and 3, we obtain the desired results. Q.E.D.

5 Numerical lllustrations

In this section, we compute yﬁ and S7 which characterize the optimal policy for our model. We

note that, in our numerical examples, y{: and S7 are rounded to the nearest integer.

vk  S% S+ st s s§ S sy s sP
91 187 219 231 233 233 233 233 233 233

Table 1: yé and ST for the base parameter values

vh  Sp Sh st s s§ st sy sy s
A =20

36 5 88 92 93 93 93 93 93 93
A= 100

182 375 439 462 466 466 466 466 466 466

Table 2: y}; and ST for varying A values

We assume the following base values for the parameters in the model:
n=10, A =50 (with exponential demand), cy=>5, hw=>5, cp=15, hg=10, pr=30, a =0.9.
The results are displayed in Tablel.
To observe the effect of the parameter values on yﬁ and S7, we provide additional

numerical examples by varying each parameter with the others kept at their original base
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values. The results are reported in Table2-8 and summarized in the following:
- As the demand increases stochastically, yzgas well as S7 increase.
- An increase in ¢y leads to a decrease in S%.
- An increase in hy leads to an increase in y£ and a decrease in S%.
- An increase in ¢p leads to a decrease in yp.
- An increase in hp leads to a decrease in yﬁ and an increase in S7.
+ An increase in pg leads to an increase in yﬁ as well as in S%.

- An increase in « leads to an increase in yzgas well as in S}.

vh o S2 sk sk sy s¢ sp sy s, s
cw =2

91 198 226 235 236 236 236 236 236 236
cw =8

91 178 213 227 230 231 231 231 231 231

Table 3: y}; and S for varying cy values

YR St Sh St St S§ St St Sh SP
hy = 2

72 210 248 264 260 260 269 269 269 269
hy =8

122 173 203 213 214 214 214 214 214 214

Table 4: y}; and S for varying hyy values

v, S% % s s&  s¢ S S s% s
cp =12

93 187 220 231 233 233 233 233 233 233
cp =18

89 187 219 231 233 233 233 233 233 233

Table 5: y{? and S for varying cp values
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vk S+ s+ st sk s% s s sp sy

118 185 217 229 231 231 231 231 231 231

hp =13

75 190 222 233 235 236 236 236 236 236

Table 6: y{% and ST for varying hpr values

vk S S5 St St 8§ St St Sy sy
pr =27

87 183 215 227 229 229 229 229 229 229
pr =33

94 191 223 234 237 237 237 237 237 237

Table 7: y'}; and S} for varying pr values

vk S¢St st Ssh sy st sy sy s
a=0.8

80 183 213 222 223 223 223 223 223 223
a=0.99

102 191 225 238 242 242 242 242 242 242

Table 8: ylj; and ST for varying « values

6 Concluding Remarks

In this paper, we consider a single product, two-stage supply chain inventory model with the
upstream warehouse W and the downstrean retailer R which is observed periodically. Under
certain conditions, we show that the optimal replenishment policy for R is a myopic solution
which depends only on the initial supply chain inventory level. Furthermore, we clarify that the
optimal ordering policy at W is a base-stock policy where the optimal base-stock level depends
on the initial supply chain inventory level. Numerical examples are provided to gain insight into

the problem. The derived policy is easy to implement. The derived policy is easy to implement.
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Our results are quite satisfactory and well-defined.

An extension that we are currently working on is the case where it is necessary to
coordinate inventory and transportation. If there are a fixed cost, positive lead-time, and finite
capacity to replenish, it may be economical to hold small replenishment until a consolidated
quantity accumulates, even though it must be paid shortage costs. That is, it is an important
issue to balance the trade-off between scale economies associated with transportation and
customer waiting.

Finally, We are considering the application of meta-heuristic methods like neural network

and genetic algorithms as a implementation to this problem.
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Appendix
A Environment dependent optimal inventory policy

A.1 Assumption and Notation

Consider a single-product periodic-review inventory system for N-periods. Let the period be
numbered such that the final period is denoted as period 1, while the first period is denoted as
period N.

The state of the environment observed at the beginning of period n (n=1,2,l... ,N) is represented
by I, and we assume that I={I,;n > 0 } is Markov chain on a countable state space £ with a
given transition matrix P=P(i,j)=P[l,.1=jl[,=1]. Let X,, denote the inventory level observed at
the beginning of period n. The basic assumption of this model is that the demand distribution
and the cost-parameters at any period depend on the state of the environment at the beginning
of that period. Therefore, the decision maker observes both the inventory level and the

environment state to decide on the optimal order quantity which is delivered immediately.

N

n n—1 n—2 2 1 0
Figure 2: The behavior of the inventory level

If D, is the total demand during period n, then the demand process D={D,,; n > 0 } is
depend on the Markov chain [ so that its conditional distribution function is A;(z,)=P[D, <
2yll,,=1], with the probability density function a;(z,). Also, we assume A;(0)=0, ai(cdot)>0.

We consider the following four types of costs: if the environmental state is ¢, a fixed
ordering cost K; independent of the order quantity, a unit ordering cost ¢;, a unit holding cost h;
incurred at the end of period, and a unit shortage cost p; incurred at the end of period.
To motivate ordering, we assume that p;>c; as in standard models. Also, we assume that
unsatisfied demands are fully backlogged.

Let Y,,(7, x,,) be the order-up-to level if the environment is ¢ and the inventory level is x,, at
the beginning of period n. The admissibility condition requires that Y,,(2, x,) = x, since we do

not allow for discarding of any inventory without satisfying demand. It is noted that, for any y,,
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the inventory level X,, is a Markov chain, where
Xy —1=%n+[Yn(3, Zn) —Xn]" =Dy,

for n > 0. Figure 1 illustrates the behavior of the inventory level.

Now, let V}(x,) be the minimum expected total discount cost of operating for n-period
with the state of the environment ¢ and the initial inventory level x,, under the best ordering
decision is used at period n through period 1. Then, a dynamic programming equation (DPE)

for the problem can be given as

‘/10(-%'0) = Oa
and
Vi (x,) = In>in {K:id(yn — zn) + G (yn) — cizn}, n > 0,i € E, (17)
Yn >y
where
_ 1 if Yn — Ty > Oa
Oyn = ) = { 0 ify, — @, =0,
and
Gi'(yn) = ciyn+ L (yn)
b aX P [V o d A > 0ie B (19
JEE 0

with the expected holding and shortage cost function at period n

oo

Yn
and the discount factor « per period.

The decision variable in this model is y,, so (18) plays a central role to find the optimal
value y.
We assume that all parameters and costs are nonnegative, and that all relevant functions

are differentiable.

A.2 single-period analysis

This analysis will provide important insights in understanding the two-period analysis and 7-

period analysis. We begin by rewriting (17) and (18) as

Vil(z1) = Um>i§ {Kid(y1 — 21) + G} (y1) — ciw1 }, (19)

Gitp) = cy+Li(n), (20)

where

[e e}

Li(yn) = hi /Oyl (1 — 21)dAi(21) +Pi/ (21 —y1)dAi(21)

1
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We first investigate the properties of (20) since it plays a central role in the minimization in
(19). We obtain the first two derivatives of (20) as follows:

dG?
oll—zilyl) = Gi'y) = e+ (hi+pi)Ai(y) —pi, (21)
d?G!
# = G'(n1) = (hi+piai(y)- (22)
dyi
Then,
G (1) = (hi +pi)as(y1) > 0, (23)

because h;, p;, and a;(y1) > 0. So, G}(y1) is convex in ¥. It should be noted that the rightside of

(21) is increasing in yj,

lim G/'(y1) =ci+h; >0 (24)
Y1—00
and
lim G (y1) = ¢; —pi < 0. (25)
y1—0

Therefore, there exists a unique solution such that
GHyr) = ci + (hi + pi)Ai(y1) — pi = 0. (26)

Let S} solve (26), that is,

1_ gt u}
Si ! [hrl-pi

S} is nonnegative and finite because 0 < [Z ;;} < 1 with (pi—¢;)> 0 and (p;—c))< (hi+py).

Now the property of (20) can be characterized by using (21) and (22):

(1) For y1 < S}, Gi'(y1) > 0, G;'(y1) > 0, hence Gi(¥,) is decreasing and convex.

(2) For y; > S}, Gi'(y1) >0, G;'(y1) > 0, hence Gi(y1) is increasing and convex.

(From these observations, it is clear that G}(y;) attains its global minimum at y; = S! with
value G}(S)).

Now, consider the minimization in (20), in particular the term (K; 6 (y1— x;) + G!(y1) . The
nature of (K; + Gl(y1)) is identical to that of G{(,) and it attains the global minimum at S} with
value K; + GX(SD).

For y; < S}, since Gl(y)) is decreasing in yi, there exists a unique solution such that
K+ Gi(S}) = Gi(y1) (27)

Let S} solve (27), then it follows from the definition of S} and the decreasing property of
Gi(y) for y1 < S} that

Ki+ G}(S}) < Gl(y1) for y1 < s, (28)

d
o K; +G(SY) > G () for st <y < SL. (29)
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The behavior of Gi(y1) and Gi(y1) + K; is shown graphically in Figure 3.

Based upon the state of the environment 7 and the initial inventory level x;, the optimal
policy can now be characterized in terms of the two critical numbers S} and s}. For x; < s}, the
advantage (Gi(x1)—GL(SH) gained by ordering up to S} can offset the fixed ordering cost K;
provided one plans to order. This follows from (28). On the other hand, for s} < x; <S4, it is not
worthwhile to order because the fixed ordering cost K; will offset the expected savings (G(x1)
—GH(S})) derived from ordering (S}—x;) units. This follows from (29). Since ordering will

increase the expected cost for x; > S}, it is not worthwhile to order, too.

Now the following summarizes the optimal policy for period 1 and the property of

Gl(y.

(1) the optimal policy for period 1 is given by

Shoifxy < sl
1

1 if.fl?1>8i7

Y (i, 1) z{

where critical numbers S} and s} are solutions to Egs.(26) and (27) and are the order-up-to
point and the reorder point, respectively.

decreasing in y; if y; < S%,

l .
(2) Gi(y1) is convex and { increasing in y;  if y1 > S}.

Therefore, the expected cost V}(x;) under the optimal policy is obtained by substituting Y7

(%, 1) into (3):

K+ GHSH — iy ifzy < s}

1 _ [ 7 7 1 >~ 55

Vi) = { GH(z1) — cimy if 21 > sl (30)
And its first two derivatives are

—¢; if 21 < st

1 —
Ville) = { GMa1) — ¢ ifay > sl oy
0 if 21 < s},
Vit (1) = { G (2) oy > sl >
i\ ¢ cir

So, Vi(x)) is quasi-convex in a;.

A.3 n-period analysis

To use induction, we assume that the following properties hold for the (n-1)-period problem,

where the state of the environment is jEE.

n—1
SJ'

if Tn—1 < 5”71

7 (33)

n—1
j )

Y':—l(.j7mn*1) = Tp—1

if 2,—1 > s
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m—1 -1
G (S]T)=0 (34)
K; + G;_l(S;‘_l) = G;-l_l(s;f_l) (35)
G >0 (36)
ybhlrgooG'” Yyn-1) =c;+hj+a Y P(i.k)h
keE
+a? Y P(k)P(k, Db+ -+ 0" 2 P(j.k)P(k,1)
kl€E
P(x,¢¥)P(¢,w)hs >0 (37)
i G ) < ¢
—a Z P(j,k)cr, —p; <0 (38)
keE
K +Gn I(Sn 1)—C]$n 1
ne1 ) ifa,a < s" 1,
‘/j (x”lfl)_ G'n l(l’n 1) CjTn—1 (39)
1f Tpo1 > s” !
—¢; 1
P ) ifmag <s7T
Vj (Tn—1) = G'n 1(1‘n D) — ¢ (40)
1f Tpo1 > s" L
0
-1
1 B if 2,1 < 5 ,
V;— (Infl) - G;/n l(l'n 1) (41)
if 21 > s” !

For an n-period problem, the DPE is given by (1). We investigate the property of (2) since it
plays a central role in the minimization in (1).
First, we rewrite (2) by substituting V}“l from (39) into it as

G (yn) = ynfci —a Y P(i,5)¢;} + L7 (yn)
JEE

+ay P(ij U I{Kﬁay—l(s;—l)
JEE s;

n—1

yno n—1
ijzn}dAi(zn) + / {G] (yn - Zn)
0
fcjzn}dAi(zn)} . (42)
And, from (40),(41), we obtain the first and the second order derivatives for (42) as follows:

G™(yn) = —aZPZJ

JjEE

+(hi +pi)Ai(yn) —pi+a Y P(i )
jE€E

n—1

Yn—S5;
n—1
y /O G (g — 20)dAs(20). (43)
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G (yn) = (hi +pi)ai(yn)

-1

Yn =S
+a ) P(ij / G (Yn — 2n)dAi(2n).- (44)

jeE
Then,

G (yn) = (hi + pi)ai(yn)

n—1

Yn—s)
+a Z P(i,7) / G;’”fl(yn — zp)dA;i(z) > 0. (45)

JjeE

because h;,p;,a;(y,), and Gj’"ﬁl(-) > 0. So, G¥(y,) is convex in y,. The rightside of (43) is

increasing in y,,

lim G!(y,) = c; + hy +aZPZJ

Yn—00 i
+a® Y P(i,§)P(j, k)hx
J,kEE
o® > P(i.j)P(j, k) Pk,
j.kl€E
+oa™ Y P(ig)
xP(j, k)P(k,1)- - P(x,¥)P(¢,w)he > 0, (46)
and
hm G (yn) = -—aZsz
jeE
s?fl
+ozZP i,] / ' G;"_l(—zn)
JjeEE
dA;(z,) < ¢ —a Z P(i,j)c; —pi <0. (47)
JEE
Therefore, there exists a unique solution such that
GM(yn) = i —a Y P(ij)e;
JjEE
+(hi 4+ pi) Ai(yn) — pi
yn—s"71
+a ) P(ij / LG g — 2n)d A () = 0. (48)

JjEE
Let S? solve (48) Then, the property of (2) is as follows:
(1) For y, < S¥, G*(yn) <0, Gi""(y,) > 0, hence G} (y,) is decreasing and convex.
(2) For y,, > St, Gj"(y») > 0, G;"(y,) > 0, hence G}(y,) is increasing and convex.

So, Gl(y)) attains its global minimum at y,, = S} with value G¥(S).

Now, consider the minimization in (1), in particular the term (K; ¢ (¥, —x») + G¥(¥»)). The
nature of (K;+G7}(y,)) is identical to that of G}(y,) and it attains the global minimum at S} with
value K;+G7(S!). For y, < S}, since G}(y,) is decreasing in y,, there exists a unique solution
such that
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Ki+ G (57) = Gi(yn) (49)

Let s! solve (49), then it follows from the definition of s/ and the decreasing property of G}(y,)
for y,, < SY that

K+ Gi(ST)
Ki+ G} (S

< Gi'(yn) for yn < s, (50)
> G(yp) for si <y, < S (51)
The behavior of G}(y,) and G}(y,) + K; is shown graphically in Figure 4.

So, based upon the state of the environment ¢ and the initial inventory level x,,, the optimal
policy can now be characterized in terms of the two critical numbers S} and s{. For x,, < s, the
advantage (G7(x,)—G?(SY)) gained by ordering up to S} can offset the fixed ordering cost K;
provided one plans to order. This follows from (50). On the other hand, for sj'<x, < S, it is not
worthwhile to order because the fixed ordering cost K; will offset the expected savings (G7(x,)
—GHSY)) derived from ordering (S} —x,,) units. This follows from (51). Since the ordering will
increase the expected cost for x,, > S7, it is not worthwhile to order, too.

Now the following summarizes the optimal policy for period n and the property of G7 ().
(1) the optimal policy for period » is

n 3 n
St if @, <SP,

x, ifx, >s7,

Vi) - {

where critical numbers S} and s} are solutions to Eqgs.(48) and (49) and are the order-up-to

point and the reorder point, respectively.

decreasing in y,, if y,, <SP,
(2) Si(yn) is convex and § o )
increasing in y,, if y,, > S}

n n
Si S;

Figure 4: The form of G} (y,) and K; + G (yn)
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Therefore, the expected cost V}'(x,) under the optimal policy is obtained by substituting Y;¥
(2,2y,) into (1):
K+ G}(S)) — ciwpn if x, < s7,
V" (@) = o T (52)
GHxn) — citn  if z, > T
And its first two derivatives are given by
- ifax, < s,

V/n(xn) = (53)
i GM(xn) — ¢ ifx, > sy,

V() 0 ifz, <s?, (54)
i \Tn) =
Gi™(xy) if 2, > s

So, V(x),) is quasi-convex in x;,.

— 216 —



