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Abstract

　　This article aims to express the pricing formula of Asian option via utility indifference pricing and 

examine the effects of the stochastic volatility on the option price. We consider the pricing problem for 

Asian option under the stochastic volatility, and derive approximated utility indifference price for the 

option. In order to express Asian option pricing formula by probabilistic form, we use the approximation 

scheme for utility indifference pricing. We further explore that the effects of the skewness for the return 

of the underlying on Asian option price by numerical scheme as examined in Heston (1993).

1　Introduction

　　In this paper, we study Asian option pricing by the utility indifference pricing approach under the 

stochastic volatility. The utility indifference price criterion was introduced by Hodges and Neuberger 

(1989), and since then, it has been applied to derivative pricing problems in various incomplete market 

models. However, the indifference price for Asian option has never been examined yet. So, this is the 

fi rst trial for it.

　　Many researchers have studied Asian option pricing problems. They especially interested in 

implementation of numerical methods in the Asian option pricing. Rogers (1995) and  Věcěr (2001) 

developed the computational pricing method via PDE. Věcěr used dimension reduction technique, and 

suggested fast/accurate computational scheme. Fouque and Han (2003) considered the Asian option 

pricing problem under the stochastic volatility model. Since incorporating the stochastic volatility adds 

the variable to the option pricing problem, one might not use PDE approach. Fouque and Han utilize the 

dimension reduction scheme used by Věcěr’s and the fast-mean reverting stochastic volatility asymptotic 

analysis. Approximated price derived by them takes into account implied volatility skew.

　　In order to derive the utility indifference price, we need to solve two distinct expected utility 

maximization problems. One is a problem without any claims, and the other is a problem with a claim. 

In various literatures, these problems have been direclty solved by HJB equation (Hodges and Neuberger

(1989), Musiela and Zariphopolou (2004)). Under the restrected fi nancial market model (Musiela and 

Zariphopolou (2004)), we can express the utility indifference price in explicit form. In general, PDE’s 

however satisfi ed by the indifference price are non-linear in the incomplete market model such as the 

stochastic volatility model used in this article. We thus should rely on the numerical scheme and that 

has some diffi culties as mentioned above, if we want to solve the indifference price. For solving these 

problems we apply the results of Chen et al., (2008), and then we obtain approximated expression 

of the utility indifference price. Chen et al., gave an approximated indifference pricing formula, and 
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theoretically showed that their formulas have good approximation accuracy compared with earlier 

studies. We also apply their approximated method in our work.

　　By their approximation method, the indifference price p is expressed as

p = P1 + P2 + … .

Terms Pi (i = 2, 3, . . .) are depended on the fi rst-derivative of the payoff function with non-traded asset 

price process. In our work, the non-traded asset price corresponds the stochastic volatility level. Since 

we consider arithmetic Asian option, its payoff function is not function of the volatility level. The fi rst-

derivative of the payoff function with the non-traded asset price is zero. This vanishes higher-order 

terms, i.e., Pi = 0 (i = 2, 3, . . .). On the other hand, P1 is expectation of the discounted payoff of the 

derivative under minimal martingale measure (Föllmer and Schweizer (1991)). Their scheme therefore 

consequently gives the pricing formula by risk-neutral pricing method. Fouque and Han also used this 

pricing formula, but they didn’t discuss the derivation of this. So, our work compensates their study. 

We recommend to see Fouque and Han (2003), if you want to know effi cient/fast computing method 

for Asian option pricing in the stochastic volatility model. We moreover explore that the effects of the 

skewness for the return of the underlying on Asian option price by numerical scheme as examined in 

Heston (1993).

　　The remaining paper is organized as follows: In the next section, we set the fi nancial market model. 

We consider an arithmetic Asian option pricing in the stochastic volatility model. In Section 3, we 

consider the utility maximization problem and its dual formulation, and solve the dual problem by the 

approximation scheme. In Section 4, we derive approximated utility indifference price. In Section 5, we 

give computational results and show the effects of the skew from the stochastic volatility on the Asian 

option price.

2　Model

　　Let us consider the following fi nancial market. There exists one risky asset (typically a stock) and 

one risk-free asset (typically a bank account). Initially, as for the bank account B, we assume that its 

value process is described by

dB(s) = rB(s)ds

for 0　s　T with B (0) = 1.

　　Next, we start with setting the stock price process with the stochastic volatility. The uncertainty 

in this market is characterized by a probability space (Ω, F, P). We then introduce a two-dimensional 

standard Brownian motion, and denote it by W = (W1,W2) on (Ω, F, P;Ft), where Ft is a filtration 

generated by (W(s); 0　s　t) and satisfi es the usual conditions. Under the above settings, the stock price 
S and the stochastic variance level Y (Stochastic Volatility) are respectively assumed to be driven by 

　　　　　　　　dS(s) = S(s)｛ μds +σ(s, Y (s))dW1(s)｝,  　　　　　　　　　　　　　　　　
(2.1)

　　　　　　　　dY(s) = a(s, Y (s))ds + b(s, Y (s))｛ ρdW1(s) +　1－ρ2dW2(s)｝
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where ρ∈ (－1, 1). The functionsσ , a and b are Lipschitz continuous functions in order to ensure the 

existence of the unique global solution.

　　Next, we construct the wealth process. We assume that the the investor has wealth X at time s ∈ [t, 
T ], and the money amount π(s) of X(s) is invested into the stock, the rest of the money is invested into 

the bank account by self-fi nancing rule. The wealth process is then given by

　　　　　　　　dX(s) = (rX(s) + π(s)(μ－r))ds + π(s)σ (s, Y (s))dW1(s). 　　　　　　　　  (2.2)

We would price a European-type fi xed strike Asian option with the strike price K whose payoff function

is supposed to be
g (T ) = (A(T )－K )+

where A(t) = T
 1  ∫ 0

t S(s)ds. From Věcěr (2001), the underlying process is give by

dA(t) =(1－ t̶ 
T ) dS(t) =:τ (t)dS(t) = S(s)｛ μ(s)ds + σ̂ (s, Y (s))dW1(s)｝

where μ(s) = μτ(s) and  σ̂ (s, Y (s))= τ (s) σ (s, Y (s)).

3　Dual Problem and Approximated Solution

In this section, we consider the portfolio optimization problem (particulary utility maximization 

problem) to derive the utility indifference price. The optimization problem is solved using the dual 

formula and Hamilton-Jacobi-Bellman (HJB) equation.

　Let us consider the following portfolio optimization problem:

　　　　　　　maximizeπ E [U(X(T)－g(T))]
　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(3.1)
　　　　　　　subject to dX(s) = (rX(s) + π (s)(μ－r))ds + π (s) σ (s, Y (s))dW1(s)

where U is the utility function. We derive the dual formula of (3.1) according to Chen et al., (2008) and 

Rogers (2003). At fi rst, we defi ne Lagrange multiplier process Λ .

dΛ(s) = Λ(s)｛α (s, ω)ds + β1(s, ω)dW1(s) + β2(s, ω)dW2(s)｝

where α, β1 and β2 are adapted stochastic processes and these are determined later. At this point, by the 

integral by parts we have

(3.2)

T

0
Λ(s)dX (s) =Λ(T )X (T) − Λ(0)X (0) − −

T

0
X (s)dΛ( s) Λ, X (T )

=Λ(T )X (T) − Λ(0)X (0)

−
T

0
X (s)Λ(s){α (s,ω)d s+ β1 (s,ω)dW 1 (s) + β2 (s,ω)dW 2 (s)}

−
T

0
Λ(s)β1 (s,ω)π (s)σ (s, Y (s))d s.
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On the other hand, substituting (2.2) into  ∫ 0
T Λ(s)dX(s) gives

(3.3)

Taking expectation (3.2) and (3.3) give

respectively. Therefore, we have

(3.4)

By (3.4), we obtain Lagrangian L as upper bound11 of (3.1):

(3.5)

From Chen et al., (2008) and Rogers (2003), the fi rst order condition and the complementary slackness

conditions to achieve the maximum value L＊ (Λ) are given as follows:

These equations lead

　　　　　　　　　　　　　　　X(T )－g(T ) = I(Λ(T)), 　　　　　　　　　　　　　　　   (3.6)

　　　　　　　　　　　　　　　α (s, ω) = －r 　　　　　　　　　　　　　　　　　　　  (3.7)

and

(3.8)

respectively, where I(・) is the inverse function of U'(・). By (3.6), (3.7) and (3.8), (3.5) reduces

(3.9)

where Ũ (・) is the convex dual function defi ned by

1 In (3.1), the maximized expected utility is achieved with respect to any X. On the other hand, we have the nonnegative condition of 

X in (3.5). This is why L in (3.5) is upper bound of (3.1).

I 1 := E
T

0
Λ(s)dX (s)

= E Λ(T )X (T ) − Λ(0)X (0) −
T

0
Λ(s){α (s,ω)X (s) + β1 (s,ω)π (s)σ (s, Y (s))}ds ,

I 2 := E
T

0
Λ(s)dX (s) = E

T

0
Λ(s)(rX (s) + π (s)(μ − r))d s ,

T

0
Λ(s)dX (s) =

T

0
Λ(s){(rX (s) + π (s)(μ − r))d s + π (s)σ (s, Y (s))d W 1(s)}.

I 1 − I 2

= E Λ(T )X (T ) −Λ(0)X (0) −
T

0
Λ(s){(α (s,ω) +r)X (s) +β1 (s,ω)π (s)σ (s, Y(s)) +π (s)(μ−r)}ds

= 0 .

L (Λ) = max
X 0 ,π

E U(X (T ) −g(T )) −Λ(T )X (T ) + Λ(0) X (0)

−
T

0
Λ(s){(α (s,ω) + r)X (s) + β1 (s,ω)π (s)σ (s, Y (s)) + π (s)(μ − r)}ds .

∂L (Λ)
∂X (T )

= 0 ,
∂L (Λ)
∂X (t)

= 0 and
∂L (Λ)
∂π

= 0 .

β1 (s,ω) = −
μ − r

σ (s, Y (s))
=: β *1 (s, Y (s)) ,

L * (Λ) = E Ũ(Λ(T )) −Λ(T )g(T ) + Λ(0) X (0)
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Ũ (y) = sup [U(x)－xy]
x　　

and Lagrange multiplier is taken form of

Λ(T ) = Λ(t)e−r (T−t)M1(t, T )  M2(t, T )

with

by (3.8). From (3.9), we obtain the dual formula

 (3.10)

Finally, we defi ne equivalent martingale measures.
Defi nition 3.1. Defi ne equivalent martingale measure P* and P** such that

for t ∈ [0, T].

　　Let us solve the dual problem. By the form of Λ(T ), we have to minimize with respect to Λ(0) and 

｛β2(s, ω)｝s∈[0,T ]. We fi rstly consider the minimization with respect to Λ(0). This is a static problem, so 

the fi rst order condition is

This and Defi nition 1 give the optimal initial wealth

(3.11)

since Ũ 0(Λ(T )) = －I(Λ(T)), where E** is the expectation under P**. By arguments in Chen et al.,(2008), 

(3.11) is extended to

　　　　　　　　　　　　　X*(t)=e−r(T−t)E**t[I(Λ(T ))+g(T )]　　　　　　　　　　　　　 (3.12)

for t ∈ [0, T], where the subscription t of Et denotes condition on the information up to t.

　　Next, we try to solve optimization problem (3.10) with respect to｛β2(s, ω)｝s∈[0,T]. We use 

Hamilton- Jacobi-Bellman equation (HJB equation), and simultaneously determine optimal ｛β2(s, ω)|s∈ 

[0, T]｝. We solve an optimization problem:

minimize β2
　E [Ũ (Λ(T ))－Λ(T )g(T )] + Λ(0)X(0).

We consider the following problem only.

At this point, we introduce a generator L.

M 1 (t, T ) = exp −
T

t

μ − r
σ (s, Y (s))

dW 1 (s) −
1
2

T

t

μ − r
σ (s, Y (s))

2

ds ,

M 2 (t, T ) = exp −
T

t
β2 (s,ω)dW 2 (s) −

1
2

T

t
β2 (s,ω)2 ds

min
Λ

E Ũ(Λ(T ))−Λ(T )g(T ) + Λ(0) X (0) .

X * (0) =e − rT E M 1 (0, T )M 2 (0, T )(− Ũ (Λ(T )) + g(T ))) = e− rT E ** [I (Λ(T )) + g(T )]

dP*

dP t = M 1 (t, T ),
dP**

dP t = M 1 (t, T )M 2 (t, T )

E (Ũ (Λ(T )) − g(T ))
∂Λ(T )
∂Λ(0)

+ X (0) = 0 .

u ( t, Λ, A, S, Y ) := min
β2

E t Ũ (Λ( T )) −Λ(T )g(T ) .
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　　HJB equation for the value function u is given by

(3.13)

The minimum value is achieved at

(3.14)

Plugging (3.14) into (3.13), we obtain the following nonlinear PDE

(3.15)

3.1 Approximated Solution

　　In this section, we consider to approximate the solution of PDE (3.15). We firstly remove the 

nonlinear term from (3.15) by putting β2 ≡ 0, that is, we consider the linear PDE as follows

From Feynman-Kac formula, this PDE has a solution

　　　　　　　　　　　　　u(0)(t,Λ(0), A, S, Y ) = Et [ Ũ (Λ(0))－Λ(0)g(T ) ]　　　　　　　　　 (3.16)

where Λ(0) (t)solves to

dΛ(0)(t)=Λ(0)(t){－rdt+β*
1(t,Y(t))dW1(t)}.

We immediately obtain β2 for the solution u(0) from (3.16)

(3.17)

Substituting u(0) or β2
(0) into R.H.S. of PDE (3.15), we have

(3.18)

L = − rΛ ∂
∂Λ

+ μ(t)S ∂
∂A

+ μS ∂
∂S

+ a(t, Y ) ∂
∂Y

+
1
2
Λ2β *1 (t, Y )2 ∂ 2

∂Λ2 +
1
2
σ̂ (t, Y )2 S 2 ∂ 2

∂A 2

+
1
2
σ (t, Y )2 S 2 ∂ 2

∂S 2 +
1
2

b (t, Y )2 ∂ 2

∂Y 2 + Λ β *1 (t, Y )σ̂ (t, Y )S ∂ 2

∂Λ∂A
− (μ − r)ΛS ∂ 2

∂Λ∂S

− ρb(t, Y )β *1 (t, Y )Λ ∂ 2

∂Λ∂Y
+ σ̂ (t, Y )σ (t, Y )S 2 ∂ 2

∂A∂S

+ ρσ̂ (t, Y )b (t, Y )S ∂ 2

∂A∂Y
+ ρb(t, Y )σ (t, Y )S ∂ 2

∂S∂Y

ut + u + min
β 2

1
2
Λ2β 2

2 uΛΛ + b (t, Y ) 1 − ρ2Λβ2 uΛ Y = 0 ,

u(T, Λ, A, S, Y ) = Ũ (Λ) −Λg(T ).

β *
2 (t, Λ, A, S, Y ) = −

b (t, Y ) 1 − ρ2 uΛ Y

ΛuΛΛ
.

u t + L u =
1
2

b(t, Y )2 (1 − ρ2 )
u2
Λ Y

uΛΛ
=

1
2
Λ2 uΛΛ (β *

2 )2 ,

u(T, Λ, A, S, Y ) = Ũ (Λ) − Λg(T ).

u (0)
t + L u (0) = 0 ,

u (0) (T, Λ, A, S, Y ) = Ũ(Λ)−Λg(T ).

β (0)
2 (t, Λ(0) , A, S, Y ) = −

b (t, Y ) 1 − ρ2 u (0)
Λ Y

Λ(0) u (0)
ΛΛ

.

u (1)
t + L u (1) =

1
2

b (t, Y )2 (1 − ρ2 )
(u (0)

Λ Y )2

u (0)
ΛΛ

=:
1
2

(Λ(0))2 u (0)
ΛΛ (β (0)

2 )2 ,

u (1) (T, Λ, A, S, Y ) = Ũ(Λ) −Λg(T ).
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Feynman-Kac formula gives a solution of (3.18), that is

 (3.19)

4  Indifference Price

　In this section, we derive the utility indifference price. At fi rst, we give β2
(0) precisely. To this end, we 

calculate u(0)
ΛY and u(0)

ΛΛ. Note that, under β2
(0) we have

u(0)(t, Λ, A, S, Y ) =Et [Ũ (Λ(0)(T ))－Λ(0)g(T )].

The fact that　　　  =－I(Λ(T )) and the linearity of expectation give the following results

where Λ(0)(T) = Λ(0)(t)e－r(T－t)M1(t, T). The second equation is used gY (T):= 　　= 0. Plugging  u(0)
ΛΛ and  

u(0)
ΛY into (3.17) yields

　　　　　　　　　　　　　　　　β2
(0) (t, Λ, A, S, Y ) = 0. 　　　　　　　　　　　　　　　(4.1)

This leads u(1)(t, Λ, A, S, Y ) = u(0)(t, Λ, A, S, Y ) in (3.19).

　　We proceed the derivation of the indifference price. The defi nition of the utility indifference price 
p(0) via duality forms is

(4.2)

Suppose that Λ*0(T) is the optimal Lagrangian level when no-claim is issued, and Λ*p(T) is the one when 

claims are issued, such that
Λ*0(T )=Λ*0(t)e－r(T－t)M1(t,T ),　　　
Λ*p(T )=Λ*p(t)e－r(T－t)M1(t,T )M2(t,T).

Parameter Value
μ 0.2
ξ 2.0

Y (0) 0.04
Ȳ 0.04
φ 0.2
K 100

Table 1: Parameters

u (1) (t, Λ, A, S, Y ) = E t Ũ(Λ(0)(T )) − Λ(0) (T )g(T ) +E t
1
2

T

t
u (0)
ΛΛ (s)(Λ (0) (s)) 2 (β (0)

2 (s)) 2 ds

= u (0) (t, Λ(0), A, S, Y ) + E t
1
2

T

t
u (0)
ΛΛ (s)(Λ (0) (s)) 2 (β (0)

2 (s)) 2 ds

where u (0) (s) := u (0) (s, Λ(0) (s), A (s), S (s), Y (s)), β (0)
2 (s) := β (0)

2 (s, Λ(0) (s), A (s), S (s), Y (s)).

∂ Ũ (Λ(T ))
∂ Λ(T )

u (0)
ΛΛ =− e − r ( T − t ) E *

t I (Λ(0) (T ))
Λ(0) (T )
Λ(0) (t)

,

u (0)
Λ Y =− e − r ( T − t ) E *

t gY (T ) (T )
∂Y (T )
∂Y (t)

= 0

∂g (T )
∂Y (T )

min
Λ(0)

E Ũ (Λ(T )) + Λ(0) X (0) = min
Λ(0)

E Ũ(Λ(T ))−Λ(T )g(T) + Λ(0)(X (0) + p(0)) .
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Under Λ*0(T) and Λ*p(T), L.H.S. of (4.2) reduces

　　　　　　　　　　　　　E [Ũ (Λ*0(T)) ] + Λ*0(0)X(0),  　　　　　　　　　　　　　　　(4.3)

and R.H.S. of (4.2) is

　　　　　　　　　　E [Ũ  (Λ*p(T )) − Λ*p(T )g(T )]+ Λ*p(0)(X(0) + p(0))

　　　　　　　　　　≈ u(1)(0,Λ*0, A, S, Y ) + Λ*p(0)(X(0) + p(0))　　　　　　　　　　　　　 (4.4)

　　　　　　　　　　= u(0)(0,Λ*0, A, S, Y ) + Λ*p(0)(X(0) + p(0)).

From (4.1), it holds M2(t, T) = 1 and this leads

　　　　　　　　　　　　　　　Λ*p = Λ*p(t)e− r(T − t)M1(t, T) = Λ*0.　　　　　　　　　　　　 (4.5)

　　Note that, (4.5) is also shown in Chen et al., (2008). They derived it by Taylor expansion. From (4.3),

(4.4) and (4.5) with the defi nition of the indifference price, we have the approximated indifference price

　　　　　　　　　　　　　　　　　p(0) = e−rTE* [g(T)] .　　　　　　　　　　　　　　　(4.6)

This result is just a pricing formula under minimal martingale measure.

5　Numerical Result

　　In this section, we explore the effects of the skewness for the return of the underlying on Asian 

option price as examined in Heston (1993). We use Heston model as example of the stochastic volatility 

model. That is, we take a(s, Y (s)) = ξ( ¯ Y − Y (s)) and b(s, Y (s)) =φ　Y (s) in (2.1), where ξ, ¯ Y and φ are 

constant. The parameters used in this examination are shown in Table 1.

　　Figure 1 shows simulated density curves of the spot return on the underlying ｛A(s)｝s∈[0,T] for each ρ (ρ 
= −0.5, 0.5). From Figure 1, we observe the skewness for ρ = −0.5, 0.5 compared with Black-Scholes

price process. The density curve at ρ = −0.5 (dotted line) has a fat left tail and a thin right tail. The 

density curve at ρ = 0.5 (dashed line) has a thin left tail and a fat right tail.

　　The skewness also affects Asian option price. Figure 2 shows it. This describes that option price 

differences between the stochastic volatility model and Black-Scholes model (call BS price). In ITM 

area, the price at ρ = −0.5 (dotted line) is larger than BS price. On the other hand, in OTM area, the price 

at ρ = 0.5 (dashed line) is larger than BS price. These biases are corresponding to the skewness

described in Figure 1.

　　These results have same characteristics to plane vanilla option in Heston’s results.
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Figure 1: Comparison of probability density functions for the spot returns on the average stock prices A. 

These functions are described by the numerical simulation with 100,000 paths.
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Figure 2: Differences of the Asian option price between Black-Scholes model and the stochastic 

volatility model. The dot-line shows the option price difference between Black-Scholes model and the 

stochastic volatility model with ρ = −0.5, and vice versa.
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