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Exponential Hedging vs Mean-Variance Hedging: 
Numerical Examples in an Incomplete Market

Kazuhiro Takino＊1

Abstract
　 In this article, we consider the exponential hedging and the mean-variance hedging in the basis risk 
model.  The basis risk model is a typical example of the in the incomplete market model.  The basis risk 
model describes the market model in which the underlying asset of the contingent claim is not traded in 
the financial market.  We compare the hedge performances for both the mean-variance hedging and the 
exponential hedging by simulating hedge errors.  We further demonstrate the exponential hedging for 
two different initial hedge costs and risk-aversions respectively.  These demonstrations give the optimal 
hedging cost (i.e., utility indifference price) which leads the well performance in the exponential hedging, 
and also verify the relation between the risk-averse and the performance of the exponential hedging.
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1 Introduction

In this article, we consider the hedging problems for the European type contingent claim taking 
into account of the position of the claim in the basis risk model.  We then demonstrate the hedge 
performance for both mean-variance hedging and exponential hedging.
　 The basis risk model (Davis (2006), Duffie and Richardson (1991), Henderson (2002), Monoyios 
(2004), Musiela and Zariphopoulou (2004) and Schweizer (1992)) is a typical example of the 
incomplete market model, which includes the model that the underlying asset of the contingent 
claim is not traded in the financial market.  The pricing models for the weather derivative or the 
derivative written on the market index are recognized as one of the basis risk model for instance.  
In the complete market (the typical example is Black-Scholes model), any contingent claims are 
replicated with traded assets.  On the other hand, the value of the claim is not surly attained with 
traded assets in the incomplete market model.  This means that the seller of the claim is exposed 
to have the hedge error risk, so she/he wants to control it with her/his preference.  The exponential 
hedging and the mean-variance hedging have independently developed in context of finding the 
optimal hedging strategy for the contingent claim in the incomplete market model.  The exponential 
hedging approach is usually formulated to maximize the expected utility for the amounts of which 
the hedge portfolio exceeds the claim payoff.  The mean-variance hedging, on the other hand, is a 
hedging criteria to minimize the hedge error measured by L2-norm, and does not take into account 
the investor’s preference for the risk.  This problem is solved by using the projection in the Hilbert 
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space (c.f., Schweizer (2001)).  The significant difference of the both approaches is whether it 
includes the risk preference of the market participant or not.  The exponential hedging reflects the 
investor’s attitude for the risk since it is based on the utility maximization with the exponential 
utility.  The exponential hedging also has been developed in context of the utility indifference 
pricing with the exponential utility (e.g., Delbaen et al., (2002), Henderson (2002), Ilhan et al., 
(2004), Mania and Schweizer (2005), Monoyios (2004, 2008) and Musiela and Zariphopoulou 
(2004)).  Mania and Shcweizer (2005) showed that the exponential hedging strategy with the utility 
indifference price converges to the strategy of the mean-variance hedging when the risk-averse 
coefficient goes to zero.  Ilhan et al., (2004) also summarized that the utility indifference price 
converges to the expectation of the discounted payoff under the minimal martingale measure when 
the risk-averse coefficient goes to zero.  This value coincides with the mean-variance hedging cost 
in our basis-risk model.
　 Finally we review previous literatures related to our study before closing this section.  Monoyios 
(2004) demonstrated the comparison of the exponential hedging with the utility indifference 
price and a naive strategy used the BS-Delta in ad-hoc.  We use his implementation scheme to 
our study since he derived the asymptotic expansion formula for the utility indifference price and 
the exponential hedging.  On the other hand, we compare the exponential hedging and the mean-
variance hedging.  It goes without saying that the mean-variance hedging strategy provides the 
minimum hedging error among various hedging strategies include the exponential hedging.  By 
comparing hedge performances for two hedging strategies, however, we verify the advantages/
disadvantages for these hedging strategies.  In fact, there are few papers corresponding to such 
a comparison.  Furthermore, we simulate the exponential hedging strategies for two difference 
hedging costs.  The one is the utility indifference price, the another is the mean-variance hedging 
cost.  This implementation has never been considered in previous researches to our knowledge.  So 
this is a contribution of the present study.  These demonstrations provides the following results: The 
mean-variance hedging takes the minimum hedging cost and minimum hedging error risk, while the 
possibility of the success hedge is weaker than the exponential hedging.  The exponential hedging, 
on the other hand, higher performance compared with the mean-variance hedging in the point 
of that the hedge portfolio exceeds the claim payoff called hedge error.  Finally, the exponential 
hedging exerts its advantages for the derivative hedging with the utility indifference price as the 
initial hedging cost.
　 We also demonstrate the hedging performance for the exponential hedging strategies for different 
risk-aversions.  From that, we observe that the risk-aversion affects the distribution of the hedge 
error in the exponential hedging as expected and especially improves the shortfall risk.
　 The rest of paper is organized as follows: In Section 2, we set up the financial market model.  
We construct the basis risk model.  In Section 3, we solve the mean-variance hedging problem.  
In Section 4, we derive the utility indifference price and the exponential hedging respectively.  In 
Section 5, we demonstrate the both mean-variance hedging and exponential hedging in numerical 
way.  We then discuss the characteristic for several hedging schemes from those numerical results.  
Finally, we conclude this study in Section 6.
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2 Model

　 In this section, we set the financial market model so-called basis risk model.  We also construct 
the equivalent martingale measure.

2.1 Financial Market Model
　 We consider the basis risk model (or non-traded asset model).  That is, there are one risky asset 
S (typically a stock), one risk-free asset B (typically a bank account) with zero risk-free rate and 
one state level Y which is supposed to be not traded in the financial market.  For instance, as to the 
weather derivative case, Y corresponds to a weather index such as the average temperature.  Let 
us set the value process for above instruments.  The uncertainty in this market is characterized by 
a probability space (Ω, F, P).  We then introduce a two-dimensional standard Brownian motion 
denoted by W＝ (W1, W⊥) on (Ω, F, P; Ft), where Ft is the filtration generated by (W(t); 0 s t) 
and satisfies the usual conditions.
　 The value process of the risk-free asset B is

dB(t)＝0

with B(0)＝1 and risk-free rate is 0.  The stock price process S and the state level Y are supposedto 
be driven by

dS(t)＝S(t){μ1dt＋σ1dW1(t)}
dY(t)＝Y(t){μ2dt＋σ2dW2(t)}

for 0 t T, where W2 :＝ρW1＋ 1－ρ2 W⊥ (－1＜ρ＜1), μi and σi (i＝1, 2) are constants.
　 We would price a European-type claim whose payoff function is denoted by H :＝H(t, Y(T)) at 
maturity T.  In the numerical simulation, we consider the put option as an example.  This allows 
us to use an asymptotic expansion introduced by Monoyios (2004).  We assume H∈L2(P), where 
L2(P) is a space of square integrable random variables, i.e.,

L2(P)＝{X is r.v. : E|X |2＜∞}.

We use European put option in the numerical example.  The put option ensures to verify the 
asymptotic expansion of the exponential hedging and the indifference price as demonstrated in 
Monoyios (2004).
　 The hedging strategies are constructed by the self-financing rule.  That is, the hedge portfolio 
value X(t) (0 t T ) is driven by

dX(t)＝κ(t)dS(t),　X(0)＝x

with the hedging strategy κ which is amount held in the stock S. X(0) corresponds the initial 
hedging cost, it is assigned to the utility indifference price in the exponential hedging as explained 
in the following section.  Now we give the mathematical condition of κ, i.e., admissible policy.
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Definition 2.1 (Admissible).  The portfolio strategy κ is admissible if it satisfies

E［ʃ T0κ2(t)S 2(t)dt］＜∞.

Therefore, we denote by A the set of all admissible policies κ.

2.2 Equivalent Martingale Measure
　 For two-dimensional predictable process λ＝(λ1, λ2)

⊥

 we introduce

Z(t)＝ε(－λ・W)

:＝exp (－ 1
2ʃ

 t

0
－(λ1(s)2＋λ2(s)2)ds－ʃ t0 (λ1(s)dW1(s)＋λ2(s)dW⊥(s))). (2.1)

We assume that θ:＝λ1(t)≡（μ1－r）/σ1 and λ＝(λ1, λ2)

⊥

 satisfies Novikov condition

E［e
1
2 ʃ 0

t (λ1(s)2＋λ2(s)2)ds］＜∞.

Then Z is a martingale under P. Z is also a solution of

dZ(t)＝－Z(t) (λ1(s)dW1(s)＋λ2(s)dW⊥(s)),　Z(0)＝1.

Defining an equivalent probability measure Pλ by

dPλ

dP
＝Z(T),

then Pλ is an equivalent martingale measure.  Under Pλ measure, the risky asset price discounted 
with the risk-free asset becomes a martingale.  Set λ＝(θ, 0)

⊥

, Pλ then yields the minimal 
martingale measure denoted by Q.  The density process of Q is also given by Z(t)＝ε(－θW1).  
Define W～＝(W～1, W

～⊥) by

W～1(t)＝W1(t)＋ʃ t0 θds,　W～⊥(t)＝W⊥(t),

then, from Girsanov’s theorem, W～ is two-dimensional Brownian motion under Q.

3 Mean-Variance Hedging

　 In the present section, we consider the mean-variance hedging strategy for multiple units of 
claim.  The result argued in this section is a basis for the main theorem.  The purpose of the mean-
variance hedging is to find a hedge portfolio strategy κ(t)∈A (0 t T ) with the initial cost C 
(constant) to minimize the hedge error with L2-norm.  Define so-called gain process G by G(t)＝
ʃ t0κ(s)dS(s), then the value process of the hedge portfolio is represented by

X(t)＝C＋G(T )

since the initial hedging cost X(0) is C (k).  Our purpose is formally to find κ such that

min （E [H－C－G(T )]2）1
2 . (3.1)

κ∈A
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3.1 Variance-Optimal Martingale Measure
The mean-variance hedging strategy is constructed with Galtchouk-Kunita-Watanabe decomposition 
of the claim H under so-called Variance Optimal Martingale Measure (VOMM).  We denote 
VOMM by P*.  In particular, the initial hedging cost of H is given by the expected value of the 
discounted payoff of H under VOMM.  We would like to recommend the reader to refer Schweizer 
(2001) and Pham (2009) more detail explanations for the mean-variance hedging.  We thus first 
need to specify VOMM P*.  We define the VOMM according to Pham (2009).
Definition 3.1 (Variance-Optimal Martingale Measure: VOMM).  The equivalent martingale 
measure Pλ is the variance-optimal martingale measure if it solves to

inf　E[ dPλ

dP ]2.

　 It is easy to find the VOMM for our basis-risk model.
Proposition 3.1 (Variance Optimal Martingale Meausre).  The variance-optimal martingale 
measure P＊ is given by

dP＊

dP
＝Z＊(t) :＝ε(－θW1)

in our financial market model introduced in previous section.

Proof. Under the real world measure P, the discount risky asset price  Ŝ is represented by using the 
martingale term M and the finite variation A

Ŝ(t)＝Ŝ(0)＋M(t)＋A(t)

where M(t)＝ʃ t0σ1X(s)dW1(s) and A(t)＝ʃ t0η(s)d〈M〉(s) with η(t)＝θ/σ1X(t)．Then the mean-variance 
tradeoff process J defined by

J(t)＝ʃ t0η(s)2d〈M〉(s)

is then deterministic.  Therefore, Lemma 4.7 in Schweizer (2001) completes the proof. □
　 From Proposition 3.1, Z＊ solves to

dZ＊(s)＝－θZ＊(s)dW～1(s)＝－θZ＊(s)
1

σ1S(s)
dS(s)＝－

θ
σ1S(s)

dS(s)＝: 
ζ(s)
Z＊(s)

dS(s) (3.2)

where ζ(s)＝－θZ＊(s)/σ1S(s)＝－η(s)Z＊(s).
Remark 3.1.  The variance optimal martingale measure P＊ in our model coincides with the 
minimal martingale measure Q.  W～ given in the last of Section 2.2, is also two-dimensional 
Brownian motion under P*.

3.2 Mean-Variance Hedging
　 In this section we give the mean-variance hedging strategy.  To this end, we first derive the 
perfect hedging strategy for the claim H under VOMM P＊ by reference to Heath et al., (2001).
　 The value processes X and Y are respectively driven by

Pλ∈Me
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dŜ(t)＝σŜ(t)dW～1(t), (3.3)
dY(t)＝(μ2－ρθσ2)Y(t)dt＋σ2Y(t)dW～2(t) (3.4)

under P＊, where dW～2＝ρdW～1＋ 1－ρ2 dW～⊥.  The Galtchouk-Kunita-Watanabe decomposition for 
H∈L2(P) under P＊ is then given by

H＝E＊[H |F0]＋ʃ T0ξH, P＊(s)dŜ(s)＋LH, P＊(T)＝: V H, P＊(T) (3.5)

with

V H, P＊(t):＝E＊[H |F0]＋ʃ t0ξH, P＊(s)dŜ(s)＋LH, P＊(t),　0 t T. (3.6)

Both of ʃ t0ξH, P＊(s)dŜ(s) and LH, P＊ are martingales under P＊, ʃ t0ξH, P＊(s)dŜ(s) is orthogonal to LH, P＊ 
under P＊.
　 Now we solve ξH, P＊ and LH, P*.  Put

v＊(t,  Ŝ(t), Y(t))＝E＊[H |Ft]

from Markov property.  Feynman-Kac formula yields that v＊(t, Ŝ(t), Y(t)) is a solution of

∂tv＊＋(μ2－ρθσ2)y∂yv＊＋
1
2
σ2

1x2∂SSv＊＋σ1σ2Ŝy∂Syv＊＋
1
2
σ2

2 y2∂yyv＊＝0 (3.7)

with v＊(T,  Ŝ, y)＝H, where ∂z f＝∂f (z)/∂z.  On the other hand, by Ito’s formula, we have

dv＊＝(∂tv＊＋(μ2－ρθσ2)y∂yv＊＋
1
2
σ2

1Ŝ 2∂SSv＊＋σ1σ2Ŝy∂Syv＊＋
1
2
σ2

2 y2∂yyv＊) dt

＋∂Sv＊dŜ(t)＋σ2 y∂yv

＊

dW～2(t). 
(3.8)

Substituting (3.7) into (3.8) we obtain

dv＊(t,  Ŝ(t), Y(t))＝∂Sv＊(t, Ŝ(t), Y(t))dŜ(t)＋σ2 y∂yv＊(t, Ŝ(t), Y(t))dW～2(t), (3.9)

then it holds

v＊(t,  Ŝ(t), Y(t))＝v＊(0,  Ŝ, y)＋ʃ t0∂Sv＊(s, Ŝ(s), Y(s))dŜ(s)＋ʃ t0σ2 Y (s )∂yv＊(s, Ŝ(s), Y(s)dW～2(s) (3.10)

By comparison between (3.6) and (3.10), we have ξH, P＊ and LH, P＊ as

ξH, P＊(t)＝∂Sv＊(t, Ŝ(t), Y(t))＋
ρσ2Y(t)
σ1Ŝ(t)

∂yv＊(t, Ŝ(t), Y(t)), (3.11)

LH, P＊(t)＝ʃ t0σ2 1－ρ2 Y(s)∂yv＊(s, Ŝ(s), Y(t))dW～⊥(s). (3.12)

Theorem 3.1.  The mean-variance hedging strategy (C, κ＊) for H∈L2(P) is given by

C＝V H, P＊(0)＝E＊[H]
κ＊(t)＝ξH, P＊(t)＋η(t)(V H, P＊(t)－C－G mvh(t))

for 0 t T, where η(t)＝θ/σ1S(t) and G mvh is the gain process for the mean-variance hedging 

strategy κ＊, i.e., G mvh(t)＝ʃ t0κ＊(s)dŜ(s).
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Proof.  The assumption of H∈L2 gives the initial cost of the mean-variance hedging strategy as 
follows

C＝E＊[H]

from the first assertion of Theorem 3.1.  Next, we verify that κ＊ is the mean-variance hedging 
strategy.  To do this, we set

I(t)＝E[(V H, P＊(t)－C－G mvh(t)) G(t)]

for 0 t T.  From Lemma 1 in Duffie and Richardson (1991), the optimality of κ＊ is equivalent 
to satisfy

I(T)＝0. (3.13)
　Defining D(t):＝V H, P＊(t)－C－G mvh(t) with D(0)＝0, leads

dD(t)＝dV H, P＊(t)－dG mvh(t)
＝ξH, P＊(t)dŜ(t)＋dLH, P*－κ*(t)dX(t)
＝ (ξH, P＊(t)－κ＊(t))dŜ(t)＋dLH, P＊(t)
＝－η(t)D(t)d(M(t)＋A(t))＋dLH, P＊(t).

From Ito’s formula and the orthogonal relation between ʃκdŜ and LH, P＊ we have

d(D(t)G(t))＝D(t)dG(t)＋V(t)dD(t)＋d〈D, G〉(t)
＝D(t)κ(t)dA(t)－η(t)D(t)G(t)dA(t)－D(t)κ(t)dA(t)＋(martingales)
＝－η(t)D(t)G(t)dA(t)＋(martingales)
＝－θ2D(t)G(t)dt＋(martingales).

From Fubini’s theorem, we obtain

I(t)＝E[D(t)G(t)]＝E[ʃ t0θ2D(s)G(s)ds]
＝ʃ t0 (－θ2)E[D(s)G(s)]ds

＝－ʃ t0θ2I(s)ds

since θ2 is deterministic.  So it holds that

dI(t)＝－θ2I(s)dt,　0 t T.

This yields

I(t)＝0,　0 t T

with I(0)＝0, and shows (3.13). □

4 Exponential Hedging and Utility Indifference Price

　 In this section, we construct the exponential hedging strategy based on the utility indifference 
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price for the claim.  This is already demonstrated by Monoyios (2004, 2008) for a unit of claim, the 
indifference price is used as the initial hedging cost.

4.1 Utility Indifference Price with Exponential Utility
　 In this section, we derive the utility indifference price as the initial hedging cost in the 
exponential hedging.  The indifference price derived by solving two distinct utility maximization 
problems.  The one is so-called Merton’s problem to maximize the expected utility from terminal 
portfolio value, the other is one from terminal portfolio value equipped with claims.  Delbaen et 
al., (2002) and Monoyios (2004, 2008) considered the later problem as the exponential hedging, in 
particular Monoyios derived a hedging strategy for the claim.
　 In order to derive the utility indifference price, we set utility maximization problems.  The 
market participant has an exponential utility with the risk averse coefficient γ>0 as follows:

U(x)＝－
1
γ

e－γx

for x>0.  Set the portfolio strategy π:＝κS, then π means the money amount held in the stock.  
We use π as an optimizer of the following utility maximization problems in this section for 
convenience.  The portfolio value process is thus given by

dX(t)＝
π(t)
S(t)

dS(t).

We denote the set of all admissible policies π for all κ∈A by A′
　 The problem to maximize the expected utility from terminal portfolio value is given by

u0(t, x)＝sup Et[U(X(T ))]

where Et denotes the expectation conditioned with the market information Ft up to time t.  On 
the other hand, the problem to maximize the expected utility from terminal portfolio value with k 
claims is represented by

u(t, x, y)＝sup Et[U(X(T )－H)].

This is the value function for the exponential heding (Delbaen et al., (2002)).
Definition 4.1 (Utility Indifference Price).  The utility indifference price p(t; k) for k claims at time 
t is a solution of

u0(t, x)＝u(t, x＋p(t), y). (4.1)

　 Since the investor receives the premium p at the initial time, so p in Definition 4.1 implies the 
seller’s price.
　 The basis risk model permits the explicit solutions for u0 and u respectively with the exponential 
utility, this leads explicit representation of p (c.f., Musiela and Zariphopoulou (2004)).
Proposition 4.1.  The utility indifference price p(t) at time t for k units of claim is

p(t)＝
1

γ(1－ρ2)
ln Ẽt[eγ(1－ρ2)H] (4.2)

π∈A′

π∈A′
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where  Ẽ denotes the expectation under Q-measure.
Proof.  See Musiela and Zariphopoulou (2004). □

4.2 Exponential Hedging
The exponential hedging has been considered by Delbaen et al., (2002), the value function of the 
hedging problem arises in the utility indifference price approach with the exponential utility, i.e., 
u(t, x, y).  Furthermore, Monoyios (2004, 2008) derived the closed formula for the hedging strategy 
by using an asymptotic expansion scheme.  The hedging strategies demonstrated by Monoyios 
(2004, 2008) use the utility indifference price as the initial hedging cost.  We thus apply Monoyios’s 
works to our hedging problem.
Proposition 4.2.  The exponential hedging strategy δ held in the stock is given by

δ(t)＝
ρσ2 y
σ1S

∂yp(t). (4.3)

Proof. See Monoyios (2004). □

4.2.1 Asymptotic Expansion of Exponential Hedging Strategy
　 Let us derive an asymptotic expansion of the exponential hedging strategy, i. e., δ in (4.3).  Since 
we have no closed formula for p(t) in (4.2), it is convenience to use the asymptotic formula of 
p(t) to obtain a closed formula of the hedging strategy.  Monoyios (2004) respectively derived an 
asymptotic expansion of p(t) and δ(t), and we use his scheme to our study.
Proposition 4.3 (Monoyios (2004)).  The utility indifference price p(t) the claim with the 
exponential utility is represented by

p(t; k)＝m1(t)＋
1
2
γε2(m2(t)－m2

1(t))＋
1
3!
γ2ε4(m3(t)－3m1(t)m2(t)＋2m3

1(t)) 
(4.4)

＋
1
4!
γ3ε6(m4－3m2

2(t)－4m1(t)m3(t)＋12m2
1(t)m2(t)－6m4

1(t))＋O(ε8),

where ε＝ 1－ρ2 and mi(t)＝Ẽt[H i] (i＝1, 2, ...), if the parameters satisfy

Ẽ[eγε2H] 2. (4.5)

　 The closed form of mi(t)＝Ẽt[H i] (i＝1, 2, ...) is given in Section 6.1 in Monoyios (2004).  From 
Proposition 4.3, we obtain a closed formula of the exponential hedging strategy (4.3) by calculating 
the first derivative of (4.4).  From (4.4), we have

∂y p(t)＝∂y m1(t)＋
1
2
γε2(∂y m2(t)－2m1(t)∂y m1(t)) 

(4.6)

＋
1
3!
γ2ε4(∂y m3(t)－3∂y m1(t)m2(t)－3m1∂y m2(t)＋6m2

1(t)∂y m1(t))

＋
1
4!
γ3ε6(∂y m4－6m2(t)∂y m2(t)－4m3(t)∂y m1(t)－4m1(t)∂y m3(t)

＋24m1(t)m2(t)∂y m1(t)＋12m2
1(t)∂y m2(t)－24m3

1(t)∂y m1(t)))＋O(ε8).
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5 Numerical Example and Main Result

　 In this section, we demonstrate each hedging strategies and compare the hedge performances 
for those hedging scheme.  We investigate the hedge performance by simulating the hedge error 
defined by

X(T)－H(T, Y(T))

where X(T) is the terminal value of the hedge portfolio and H(T, Y (T)) denotes the payoff of the 
claim.  We use Monte-Carlo Simulation to demonstrate the hedging strategies, and the parameters 
used in this example are presented in Table 1.

　 We consider the three hedging strategies:
1. the mean-variance hedging denoted ‘MVH’

2. the exponential hedging with the mean-variance hedging cost denoted ‘Exp. Naive’

3. the exponential hedging with the utility indifference price denoted ‘Exp.’ for γ＝0.005, 0.01.

5.1 Comparison between Mean-Variance Hedging and Exponential Hedging
Table 2―4 summarize the statistics for the results of the simulations with varying ρ with 100,000 
simulation times.  From Table 2, the utility indifference price requires more the initial hedging 
cost than the mean-variance hedging.  Table 3 exactly shows the performance of each hedging 
strategies.  From table, the exponential hedging with the utility indifference price has the most 
high-performance among three strategies.  The value function of the exponential hedging problem 
implies the reason for this result.  The utility level increases if the hedge portfolio value exceeds the 
claim payout, this leads that the exponential hedging tends to have the hedge performance same as 
the one of the superhedging strategy.  The same result will be reported as success hedge ratio in the 
followings.  Table 4 shows very natural outcomes because of the objective function of the mean-
variance hedging.  If we measure the hedge error risk with the standard deviation of the hedge error, 
the mean-variance hedging results in the smallest hedge error risk.  We note that the exponential 
hedging with mean-variance hedging cost provides worst performance (Table 3, 4).
　 Finally, we also implement the hedge performance.  The sample path is arose 10,000 times with 

Table 1: Parameters used in the numerical examples.

Parameter Value

S(0) 100
μ1 0.01
σ1 0.25
Y(0) 100
μ2 0.12
σ2 0.30
K 100
T 1.0
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ρ＝0.75 and γ＝0.005, 0.01.  This experience verifies the performance of the exponential hedging 
with the indifference price.  To this end, we define the success hedge ratio by

Success Hedge Ratio＝
#(X(T) H(T, Y(T))

10000
.

The results are shown in Figure 1 and Table 5.  The results are similar to the above, we focus on the 
success hedge ratio in the bottom of the table.  The hedging strategy which provides the most high-

Table 2: The initial hedge cost. For the ‘Exp. Naive’ strategy, the initial hedging cost is used the 
mean-variance hedging cost. The column of ‘Exp.’ shows the utility indifference price.

Exp.

ρ MVH Exp. Naive γ＝0.005 γ＝0.01

－0.75 4.7309 ← 4.8558 4.9653
－0.5 5.5034 ← 5.7079 5.9314
－0.25 6.3596 ← 6.6750 7.0023
　0 7.3013 ← 7.6810 8.0784
　0.25 8.3294 ← 8.7167 9.1294
　0.5 9.4436 ← 9.7946 10.1554
　0.75 10.6405 ← 10.8626 11.0881

Table 3: The average of the hedge error.

Exp.

ρ MVH Exp. Naive γ＝0.005 γ＝0.01

－0.75 －0.4745 －0.4024 －0.2865 －0.1613
－0.5 －0.2331 －0.0972 0.0375 0.3251
－0.25 －0.1199 －0.0203 0.2235 0.6077
　0 0.0137 －0.0048 0.3819 0.7792
　0.25 －0.0127 －0.1437 0.3150 0.6827
　0.5 －0.0086 －0.2711 0.1099 0.4100
　0.75 －0.2323 －0.5959 －0.3449 －0.1427

Table 4: The standard deviation of the hedge error.

Exp.

ρ MVH Exp. Naive γ＝0.005 γ＝0.01

－0.75 7.7194 7.5992 7.5053 7.5945
－0.5 9.5986 10.2937 9.7792 10.2860
－0.25 10.9539 11.7409 11.3108 11.7466
　0 11.5624 12.0164 11.9986 11.9986
　0.25 11.5798 12.1159 11.9214 12.1129
　0.5 10.6222 11.0927 10.9901 11.1047
　0.75 8.6604 8.9458 8.9072 8.9600
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Figure 1: The distribution of the hedge error. The graphs respectively show 
the histogram for the mean-variance hedging, the exponential 
hedging with the naive cost and the exponential hedging with the 
utility indifference cost (with γ＝0.01) from above. Each graphs 
are described from 10,000 with ρ＝0.75.
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performance is the exponential hedging with the utility indifference price, the success hedge ratio is 
56.63％.  The second best performance is the mean-variance hedging which hedge ratio is 55.68％.  
The exponential hedging with the mean-variance hedging cost gives the worst results.

5.2 Risk-Aversion and Hedging Performance of Exponential Hedging
　 Observing Table 2―5 makes us characteristics for the exponential hedging in the risk-
management of view.  From Table 2, the higher risk-averse requires more hedging cost which 
is used the utility indifference price.  According to that, the exponential hedging successes to 
reduce the possibility of the shortfall (Table 3, 5).  These results are interpreted as follows: The 
risk-aversion has role to control the shortfall risk in the exponential hedging.  Elimination of the 
shortfall risk is accomplished via the utility indifference price.  On the other hand, the standard 
deviation of the hedge error increases with the risk-aversion.

6 Concluding Remarks

In this paper, we implemented and discussed the hedging performance for the mean-variance 
hedging and the exponential hedging.  We observe the relations between risk and return and 
between cost and performance from comparison of the mean-variance hedging and the exponential 
hedging.  If one wants to reduce the shortfall risk, she/he must invest more money to the hedging.  
Also, if one wants to obtain the high success hedge ratio (i.e., hedge return), she/he should take 
more risk.  We did not only compare two distinct hedging strategies, also demonstrated the hedging 
strategies with different initial hedging costs.  When we use the mean-variance hedging cost as an 
ad-hoc way, the exponential hedging did not provide its advantages at all.  On the other hand, using 
the utility indifference price as the initial cost implemented hedge performance.  This alerts that 
the wrong estimation of the hedging cost gives bad hedging results.  Finally, we compare the hedge 
results of the exponential hedging strategies for different risk-aversions.  From this experimentation, 
we obtained the characteristics of the exponential hedging such that the risk-aversion manages the 
shortfall risk through the utility indifference price.
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